def drawingStayAreaCenter(data,
                          fname,
                          dir='imgresults',
                          title='Result for Finding StayArea'):
    '''
    画用户停留区域结果图,只画出停留区域中心点-v1.1
    :param data: 结果数据集 list[type, lat,longti,time]类型
    :param fname: 保存图片文件名
    :param dir: 文件保存目录名
    :param title: 图的标题
    :return:
    '''
    loop = 1
    for line in data:
        print('Drawing center point [%d], left [%d]' %
              (loop, len(data) - loop))
        content = line.rstrip().split(',')
        if content[0] == 'Center':
            color_r = random.uniform(0, 1)
            color_b = random.uniform(0, 1)
            color_g = random.uniform(0, 1)
            plt.plot(float(content[1]),
                     float(content[2]),
                     '.',
                     color=(color_r, color_g, color_b),
                     linewidth=0.5)
        loop += 1
    plt.xlabel('Latitude')
    plt.ylabel('Lontitude')
    plt.title(title)
    plt.grid(True)
    fname = combileFileName(dirs=dir, filename=fname)
    plt.savefig(fname)
    plt.clf()
    print('Drawing end')
def seperateUserTrajectory(user_trajectory,
                           dir=r'classifytxtresults',
                           filename=r'10&8&40user.txt'):
    '''
    将用户轨迹分离,分为被检测用户的轨迹以及其他用户的轨迹
    :param user_trajectory: 一组相似用户的所有轨迹类型为:dict{'user', list[Trajectory]}
    :param dir: 原始相似用户保存的文件目录名
    :param filename: 原始相似用户保存的文件名,文件的第一条用户即为待检测的用户
    :return: 被检测用户的轨迹列表类型为:list[Trajectory]和其他用户的轨迹列表类型为:list[Trajectory]
    '''
    filename = combileFileName(dirs=dir, filename=filename)
    input_file = open(filename)
    detected_user = input_file.readline().rstrip()
    input_file.close()
    detected_trajectorys = []
    others_trajectorys = []
    for key in user_trajectory.keys():
        if key == detected_user:
            trajectorys = user_trajectory.get(key).copy()
            for trajectory in trajectorys:
                detected_trajectorys.append(trajectory)
        else:
            trajectorys = user_trajectory.get(key).copy()
            for trajectory in trajectorys:
                others_trajectorys.append(trajectory)
    return detected_trajectorys, others_trajectorys
def drawingStayAreaDetail(data,
                          fname,
                          dir='imgresults',
                          minlat=31,
                          maxlat=32,
                          minlon=121,
                          maxlon=122,
                          title='StayArea Result for Finding Staypoint'):
    '''
    画用户停留区域结果图,画出某范围内的停留区域中心点以及其邻居节点的详细画图-v1.1
    :param data: 结果数据集 list[type, lat,longti,time]类型
    :param fname: 保存图片文件名
    :param dir: 文件保存目录名
    :param minlat: 最小纬度
    :param maxlat: 最大纬度
    :param minlon: 最小经度
    :param maxlon: 最大经度
    :param title: 图的标题
    :return:
    '''
    loop = 1
    color_index = 0
    ret_color = []
    skip = 0
    for line in data:
        print('Drawing detail point [%d], left [%d], minlat [%d]' %
              (loop, len(data) - loop, minlat))
        content = line.rstrip().split(',')
        lat = float(content[1])
        lon = float(content[2])
        if (maxlat >= lat >= minlat) and (maxlon >= lon >= minlon):
            if content[0] == 'Center':
                color_r = random.uniform(0, 1)
                color_b = random.uniform(0, 1)
                color_g = random.uniform(0, 1)
                ret_color.append([color_r, color_g, color_b])
                color_index += 1
                plt.plot(lat, lon, '.', color=(color_r, color_g, color_b))
                plt.text(lat, lon, 'C' + str(color_index))
            else:
                if skip % 2 == 0:
                    plt.plot(lat,
                             lon,
                             '.',
                             color=(ret_color[color_index - 1][0],
                                    ret_color[color_index - 1][1],
                                    ret_color[color_index - 1][2]))
        loop += 1
        skip += 1
    plt.xlabel('Latitude/°')
    plt.ylabel('Lontitude/°')
    plt.title(title)
    plt.grid(True)
    fname = combileFileName(dirs=dir, filename=fname)
    plt.savefig(fname)
    plt.clf()
    print('Drawing end')
def loadTxtSimilarityUser(dir=r'classifytxtresults',
                          filename=r'10&8&40user.txt'):
    '''
    加载用户分类结果,用轨迹挖掘提供用户信息
    :param dir: 目录名
    :param filename: 文件名
    :return: 将相似用户按组划分,类型为list[user]
    '''
    filename = combileFileName(dirs=dir, filename=filename)
    similarity_user = []
    for line in open(filename):
        if line != '':
            similarity_user.append(line.rstrip())
    return similarity_user
def outputClassifyPklResults(data,
                             dir=r'classifypklresults',
                             filename=r'classifyresult.pkl'):
    '''
    保存用户分类结果数据信息,以二进制形式保存,将结果序列化保存-v1.0
    :param data: 用户分类结果数据信息  list[UserClassify]
    :param dir: 目录名
    :param filename: 保存数据的文件名
    :return:
    '''
    print('Output beginlocation')
    filename = str(len(data)) + '&' + filename
    filename = combileFileName(dir, filename)
    out_file = open(filename, 'wb')
    pickle.dump(data, out_file)
    out_file.close()
    print('Output endlocation')
def outputPklResults(data,
                     user='******',
                     dir=r'saveresults',
                     filename=r'dbscanresult.pkl'):
    '''
    保存停留区域或者停留位置挖掘结果,以二进制形式保存,将结果序列化保存-v1.1
    :param data: 需要保存的停留区域以及停留位置数据  list[StayArea]或list[StayPoint]
    :param dir: 目录名
    :param filename: 保存数据的文件名
    :return:
    '''
    print('Output beginlocation')
    filename = user + '&' + str(len(data)) + '&' + filename
    filename = combileFileName(dir, filename)
    out_file = open(filename, 'wb')
    pickle.dump(data, out_file)
    out_file.close()
    print('Output endlocation')
Esempio n. 7
0
def drawingStayAreaCenter(data,
                          fname,
                          dir='imgresults',
                          title='MSUserA Rawdata Distribute',
                          minlat_2=39,
                          maxlat_2=41,
                          minlon_2=116,
                          maxlon_2=117):
    '''
    minlat_2=6.6, maxlat_2=7, minlon_2=46, maxlon_2=48
    minlat_2=39, maxlat_2=41, minlon_2=116, maxlon_2=117
    画用户停留区域结果图,只画出停留区域中心点-v1.1
    :param data: 结果数据集 list[type, lat,longti,time]类型
    :param fname: 保存图片文件名
    :param dir: 文件保存目录名
    :param title: 图的标题
    :return:
    '''
    loop = 1
    for line in data:
        print('Drawing center point [%d], left [%d]' %
              (loop, len(data) - loop))
        content = line.rstrip().split(',')
        lat = float(content[0])
        lon = float(content[1])
        if (maxlat_2 >= lat >= minlat_2) and (maxlon_2 >= lon >= minlon_2):
            color_r = random.uniform(0, 1)
            color_b = random.uniform(0, 1)
            color_g = random.uniform(0, 1)
            plt.plot(lat,
                     lon,
                     '.',
                     color=(color_r, color_g, color_b),
                     linewidth=0.5)
        loop += 1
    plt.xlabel('Latitude/°')
    plt.ylabel('Lontitude/°')
    plt.title(title)
    plt.grid(True)
    fname = combileFileName(dirs=dir, filename=fname)
    plt.savefig(fname)
    plt.clf()
    print('Drawing end')
def outputClassifyTxtResults(data, dir=r'classifytxtresults'):
    '''
    保存用户分类结果数据信息,以文本文件形式保存-v1.0
    :param data: 用户分类结果数据信息  list[UserClassify]
    :param dir: 目录名
    :return:
    '''
    index = 1
    for item in data:
        print('Output begin user similarity %d group' % index)
        filename = str(index) + '&' + str(len(
            item.similarityuser)) + '&' + item.user + '.txt'
        filename = combileFileName(dir, filename)
        outfile = open(filename, 'w')
        outfile.write(item.user)
        outfile.write('\n')
        for key in item.similarityuser.keys():
            outfile.write(key)
            outfile.write('\n')
        outfile.close()
        index += 1
def loadUserData(similarity_user, dirs=r'rawsdata'):
    '''
    加载一组相似用户的地理位置数据
    :param similarity_user: 一组相似用户类型为:list[user]
    :param dirs: 原始文件目录名
    :return: 加载完一组相似用户地理位置数据类型为:dict{'user':list[TLocation]}
    '''
    user_location = {}
    for item in similarity_user:
        filename = item + '.txt'
        print('begins %s' % filename)
        filename = combileFileName(dirs, filename)
        locations = []
        for line in open(filename):
            content = line.rstrip().split(',')
            tlocation = TLocation()
            tlocation.lat = float(content[0])
            tlocation.longti = float(content[1])
            tlocation.timer = datetime.strptime(content[2], str_formate)
            locations.append(tlocation)
        user_location[item] = locations.copy()
    return user_location
def outputTxtResults(data,
                     user='******',
                     dir=r'showresults',
                     filename=r'dbscanresult.txt'):
    '''
    将挖掘停留区域结果数据导出为文本文件,给画图程序提供源数据-v1.1
    :param data: 挖掘停留区域或停留位置的结果集,类型为list[StayArea]或list[StayPoint]
    :param dir: 目录名
    :param filename: 输出数据文件名
    :return:
    '''
    filename = user + '&' + str(len(data)) + '&' + filename
    filename = combileFileName(dir, filename)
    print('Output beginlocation')
    outfile = open(filename, 'w')
    print('Total StayArea|StayPoint center: %d ' % (len(data)))
    for item in data:
        print('StayArea|StayPoint [%d] has [%d] nerborhoods' %
              (data.index(item), len(item.nerborhoods)))
        outfile.write('Center')
        outfile.write(',')
        outfile.write(str(item.centerlat))
        outfile.write(',')
        outfile.write(str(item.centerlon))
        outfile.write('\n')
        for nerbor in item.nerborhoods:
            outfile.write('Nerborhood')
            outfile.write(',')
            outfile.write(str(nerbor.lat))
            outfile.write(',')
            outfile.write(str(nerbor.longti))
            outfile.write(',')
            outfile.write(str(nerbor.timer))
            outfile.write('\n')
    outfile.close()
    print('Output endlocation')
Esempio n. 11
0
def drawingStayArea(data,
                    fname,
                    dir='imgresults',
                    title_1='Result for All StayArea Center(a)',
                    title_2='Leftup Part(b)',
                    title_3='Rightdown Part(c_1)',
                    title_4='Rightdown Part(c_2)',
                    minlat_1=31,
                    maxlat_1=32,
                    minlon_1=121,
                    maxlon_1=122,
                    minlat_2=39,
                    maxlat_2=41,
                    minlon_2=116,
                    maxlon_2=117,
                    minlat_3=39.8,
                    maxlat_3=40.4,
                    minlon_3=116.25,
                    maxlon_3=116.45):
    '''
    画用户停留区域结果图,将中心点,详细点全部画于一张图上-v1.1
    :param data: list[type,lat,longti,time]类型
    :param fname: 保存结果文件名
    :param dir: 保存结果目录名
    :param title_1: 标题1
    :param title_2: 标题2
    :param title_3: 标题3
    :param title_4: 标题4
    :param minlat_1: 最小纬度1
    :param maxlat_1: 最大纬度1
    :param minlon_1: 最小经度1
    :param maxlon_1: 最大经度1
    :param minlat_2: 最小纬度2
    :param maxlat_2: 最大纬度2
    :param minlon_2: 最小经度2
    :param maxlon_2: 最大经度2
    :param minlat_3: 最小纬度3
    :param maxlat_3: 最大纬度3
    :param minlon_3: 最小经度3
    :param maxlon_3: 最大经度3
    :return:
    '''
    gc.collect()
    fig = plt.figure()
    xlable = 'Latitude'
    ylable = 'Lontitude'
    skip_3 = 0
    skip_4 = 0
    ax_1 = fig.add_subplot(221,
                           title=title_1,
                           xlabel=xlable,
                           ylabel=ylable,
                           autoscale_on=True)
    ax_2 = fig.add_subplot(222,
                           title=title_2,
                           xlabel=xlable,
                           ylabel=ylable,
                           autoscale_on=True)
    ax_3 = fig.add_subplot(223,
                           title=title_3,
                           xlabel=xlable,
                           ylabel=ylable,
                           autoscale_on=True)
    ax_4 = fig.add_subplot(224,
                           title=title_4,
                           xlabel=xlable,
                           ylabel=ylable,
                           autoscale_on=True)
    loop = 1
    color_index = 0
    ret_color = []
    all_num = len(data)
    if all_num >= 300000:
        skip_num = 6
    elif 300000 > all_num >= 200000:
        skip_num = 5
    elif 200000 > all_num >= 100000:
        skip_num = 4
    elif 100000 > all_num >= 70000:
        skip_num = 2
    else:
        skip_num = 1
    for line in data:
        print('Drawing detail point [%d], left [%d]' %
              (loop, len(data) - loop))
        content = line.rstrip().split(',')
        lat = float(content[1])
        lon = float(content[2])
        if content[0] == 'Center':
            color_r = random.uniform(0, 1)
            color_b = random.uniform(0, 1)
            color_g = random.uniform(0, 1)
            ret_color.append([color_r, color_g, color_b])
            color_index += 1
            ax_1.plot(lat, lon, 'o', color=(color_r, color_g, color_b))
            if (maxlat_1 >= lat >= minlat_1) and (maxlon_1 >= lon >= minlon_1):
                ax_2.plot(lat, lon, '.', color=(color_r, color_g, color_b))
                ax_2.text(lat, lon, 'C' + str(color_index))
            elif (maxlat_2 >= lat >= minlat_2) and (maxlon_2 >= lon >=
                                                    minlon_2):
                skip_3 = 0
                ax_3.plot(lat, lon, '.', color=(color_r, color_g, color_b))
                ax_3.text(lat, lon, 'C' + str(color_index))
            if (maxlat_3 >= lat >= minlat_3) and (maxlon_3 >= lon >= minlon_3):
                skip_4 = 0
                ax_4.plot(lat, lon, '.', color=(color_r, color_g, color_b))
                ax_4.text(lat, lon, 'C' + str(color_index))
        else:
            if (maxlat_1 >= lat >= minlat_1) and (maxlon_1 >= lon >= minlon_1):
                ax_2.plot(lat,
                          lon,
                          '.',
                          color=(ret_color[color_index - 1][0],
                                 ret_color[color_index - 1][1],
                                 ret_color[color_index - 1][2]))
            elif (maxlat_2 >= lat >= minlat_2) and (
                    maxlon_2 >= lon >= minlon_2) and skip_3 % skip_num == 0:
                #and skip_3 % 2 ==0
                ax_3.plot(lat,
                          lon,
                          '.',
                          color=(ret_color[color_index - 1][0],
                                 ret_color[color_index - 1][1],
                                 ret_color[color_index - 1][2]))

            if (maxlat_3 >= lat >= minlat_3) and (
                    maxlon_3 >= lon >= minlon_3) and skip_4 % skip_num == 0:
                #and skip_4 % 2 ==0
                ax_4.plot(lat,
                          lon,
                          '.',
                          color=(ret_color[color_index - 1][0],
                                 ret_color[color_index - 1][1],
                                 ret_color[color_index - 1][2]))
            skip_3 += 1
            skip_4 += 1
        loop += 1
    ax_1.grid(True)
    ax_2.grid(True)
    ax_3.grid(True)
    ax_4.grid(True)
    fname = combileFileName(dirs=dir, filename=fname)
    fig.tight_layout(pad=1.1)
    fig.set_figheight(6.5)
    fig.set_figwidth(12)
    fig.savefig(fname)
    fig.clf()
    print('Drawing end')
Esempio n. 12
0
def drawingTrajectory(trajectorys,
                      fname,
                      type,
                      dir='imgresults',
                      title_1='All normal trajectory(a)',
                      title_2='Leftup Part(b)',
                      title_3='Rightdown Part(c_1)',
                      title_4='Rightdown Part(c_2)',
                      minlat_1=31,
                      maxlat_1=32,
                      minlon_1=121,
                      maxlon_1=122,
                      minlat_2=39,
                      maxlat_2=41,
                      minlon_2=116,
                      maxlon_2=117,
                      minlat_3=39.8,
                      maxlat_3=40.4,
                      minlon_3=116.25,
                      maxlon_3=116.45):
    '''
    画用户停留区域结果图,将中心点,详细点全部画于一张图上-v1.1
    :param trajectorys: list[type,lat,longti,time]类型
    :param fname: 保存结果文件名
    :param type: 轨迹类型,正常和异常
    :param dir: 保存结果目录名
    :param title_1: 标题1
    :param title_2: 标题2
    :param title_3: 标题3
    :param title_4: 标题4
    :param minlat_1: 最小纬度1
    :param maxlat_1: 最大纬度1
    :param minlon_1: 最小经度1
    :param maxlon_1: 最大经度1
    :param minlat_2: 最小纬度2
    :param maxlat_2: 最大纬度2
    :param minlon_2: 最小经度2
    :param maxlon_2: 最大经度2
    :param minlat_3: 最小纬度3
    :param maxlat_3: 最大纬度3
    :param minlon_3: 最小经度3
    :param maxlon_3: 最大经度3
    :return:
    '''
    gc.collect()
    fig = plt.figure()
    xlable = 'Latitude'
    ylable = 'Lontitude'
    ax_1 = fig.add_subplot(111,
                           title=title_1,
                           xlabel=xlable,
                           ylabel=ylable,
                           autoscale_on=True)
    loop = 1
    for trajectory in trajectorys:
        # if loop == 1:
        minlat_1 = trajectory.beginlocation.lat
        minlon_1 = trajectory.beginlocation.longti
        maxlat_1 = trajectory.endlocation.lat
        maxlon_1 = trajectory.endlocation.longti

        print('Drawing %s trajectory [%d], left [%d]' %
              (type, loop, len(trajectorys) - loop))
        for point in trajectory.points:
            ax_1.plot(point.lat, point.longti, 'r.', alpha=0.2)
            # ax_1.text(point.lat, point.longti, str(trajectory.tid))
        nerbors = trajectory.nerbors.copy()
        for nerbors_trajectory in nerbors:
            for point in nerbors_trajectory.points:
                if (maxlat_1 >= point.lat >=
                        minlat_1) and (maxlon_1 >= point.longti >= minlon_1):
                    ax_1.plot(point.lat, point.longti, 'k.')
        loop += 1
    ax_1.grid(True)
    fname = combileFileName(dirs=dir, filename=fname)
    # fig.tight_layout(pad=1.1)
    # fig.set_figheight(6.5)
    # fig.set_figwidth(12)
    fig.savefig(fname)
    fig.clf()
    print('Drawing end')