Esempio n. 1
0
 def test_predict(self):
     tests = [("<?php echo 1+1; ?>", 1), ('<?php system("ls"); ?>', 0)]
     p = predict.Predictor("./model/model.joblib")
     tmp_file = "/tmp/tmp.php"
     for t in tests:
         with open(tmp_file, "w") as f:
             f.write(t[0])
         result = p.predict(tmp_file)
         print(result)
         self.assertEqual(result, t[1])
Esempio n. 2
0
def initPredictor():
    global predictor
    max_gram = 5

    tokenizer = predict.Tokenizer()
    tokens = []
    tokens = tokens + tokenizer.tokenize_file("data/bee_movie.txt")
    tokens = tokens + tokenizer.tokenize_file("data/moby_dick.txt")
    tokens = tokens + tokenizer.tokenize_file("data/the_iliad.txt")

    predictor = predict.Predictor(tokens, tokenizer, max_gram)
Esempio n. 3
0
 def add_predictor(self, predictor_name):
     if predictor_name == setting.PREDICTOR_DEFAULT:
         self.predictor = predict.Predictor()
     elif predictor_name == setting.PREDICTOR_SIMPLE:
         self.predictor = predict.SimplePredictor()
     elif predictor_name == setting.PREDICTOR_Q:
         self.predictor = predict.QPredictor()
         self.predictor.init(self.switch_num)
     elif predictor_name == setting.PREDICTOR_DQN:
         self.predictor = predict.DQNPredictor()
         self.predictor.init(self.switch_num)
     else:
         raise NameError('Error. No such predictor. Exit')
     return
Esempio n. 4
0
 def _actualrun(self):
     self.pickle_and_call('DPPP {}'.format(self.ddecal2))
     self.fix_h5('prephase.h5')
     self.pickle_and_call('DPPP {}'.format(self.acal2))
     # self.pickle_and_call('DPPP {}'.format(self.ddecal_diag))
     # self.fix_h5('prephase2.h5', True)
     # self.pickle_and_call('DPPP {}'.format(self.acal_diag))
     self._init_losoto()
     self.pickle_and_call(self.losoto_p)
     # self.pickle_and_call(self.losoto_a)
     self.pickle_and_call('DPPP {}'.format(self.ddecal_pu))
     self.fix_folders()
     predictor = pr.Predictor(self.ms, self.predict_path, self.fpath, self.pset_loc)
     predictor.initialize()
     predictor.execute()
     os.mkdir('{}/losoto'.format(self.ms))
Esempio n. 5
0
def main():

    max_gram = 3

    tokenizer = predict.Tokenizer()
    tokens = []
    tokens = tokens + tokenizer.tokenize_file("data/bee_movie.txt")
    tokens = tokens + tokenizer.tokenize_file("data/moby_dick.txt")

    predictor = predict.Predictor(tokens, tokenizer, max_gram)

    while True:
        user_input = input("~> ")

        if user_input == ":q":
            return

        predicted = predictor.get_prediction(user_input)
        print(json.dumps(predicted.most_common(10)))
Esempio n. 6
0
 def setModel(self, modelFilePath):
     self.model = predict.Predictor(modelFilePath)
Esempio n. 7
0
import predict
import determine_position
import numpy as np

def convert_frame(a, b, c, T):
    x = np.array([[a, b, c, 1]]).T
    y = (T @ x).squeeze()
    return y[0], y[1], y[2]

# load the trained model
# TODO determine path
predictor = predict.Predictor(ckpt_path='20000.pth')

# let the robot touch one edge
# 1st point on edge
N = 3 # take 3 points along an edge and take average
a1, b1, c1 = [0] * N, [0] * N, [0] * N
a2, b2, c2 = [0] * N, [0] * N, [0] * N

for i in range(N):
    depth_map0 = from_robot() # TODO (400,) ndarray, some assumed API
    a1[i], b1[i], c1[i], a2[i], b2[i], c2[i] = predictor.predict(depth_map0)
    a1[i], b1[i], c1[i], a2[i], b2[i], c2[i] = a1[i].item(), b1[i].item(), c1[i].item(), a2[i].item(), b2[i].item(), c2[i].item()

a1 = sum(a1) / N
b1 = sum(b1) / N
c1 = sum(c1) / N
a2 = sum(a2) / N
b2 = sum(b2) / N
c2 = sum(c2) / N
Esempio n. 8
0
#!/usr/bin/env python

import time
import cv2
import predict
import numpy as np
import sys
import rospy

CLASSES = [
    'forward', 'backward', 'left', 'right', 'stop', 'fleft', 'fright', 'bleft',
    'bright'
]
predictor = predict.Predictor(sys.argv[1], sys.argv[2])

from sensor_msgs.msg import Image, CameraInfo
from cv_bridge import CvBridge, CvBridgeError


class Exp:
    def __init__(self):
        self.output = None
        self.ori = None
        self.blur = None
        self.mask = None

        self.data_methods = ['blur', 'mask', 'ori', 'output']
        self.classes = [
            'forward', 'backward', 'left', 'right', 'stop', 'fleft', 'fright',
            'bleft', 'bright'
        ]
Esempio n. 9
0
import socketio
import predict

sio = socketio.Client()
pr = predict.Predictor()


@sio.on("connect")
def on_connect():
    print("I\'m Connected!")


@sio.on("message")
def on_message(data):
    print("I received a message: " + str(data))


@sio.on("disconnect")
def on_disconnect():
    print("I\'m Disonnected!")


if __name__ == "__main__":
    sio.connect("http://joshuayuan.me:8080")

    pr.start(sio)
    # sio.emit("pi:server", {"msg": "actually new message!"})
Esempio n. 10
0
import numpy as np
import pandas as pd

import preprocess as prep
import predict as tr

STK = pd.read_csv("GOOGL.csv")
if len(STK) == 0:
    print("no csv data")
    exit()

dataPrep = prep.DataPrep("quandl", STK)
features, labels = dataPrep.stk2ind()

RF = tr.Predictor(features, labels, "rf")
RF.test()