Esempio n. 1
0
def button_event_6():
    #防止未导入信息而报错
    if di.global_class_names == 'null':
        roll_text_1.insert('insert', "\n请先导入信息,再进行标签预测!")
    else:
        #获取prediction数据的地址
        prediction.predict_txt_dir = entry_2_8.get()
        #将myGUI传给dpp的数据同样传给precision
        #直接由myGUI传比较好,直接得到模型就能预测
        #传入channel
        channel = entry_2_6.get()
        prediction.channel_s = int(channel.split(',')[0])
        prediction.channel_e = int(channel.split(',')[1])
        #传入botton_state
        #判断复选框状态,确定dpp.main()中是否全部运行
        #裁剪
        if cb_v1.get() == 0:
            prediction.botton_state[0] = 0
        else:
            prediction.botton_state[0] = 1
        #均值
        if cb_v2.get() == 0:
            prediction.botton_state[1] = 0
        else:
            prediction.botton_state[1] = 1
        #去背景
        if cb_v3.get() == 0:
            prediction.botton_state[2] = 0
        else:
            prediction.botton_state[2] = 1
        #数值缩放
        if cb_v4.get() == 0:
            prediction.botton_state[3] = 0
        else:
            prediction.botton_state[3] = 1
        #降维
        if cb_v5.get() == 0:
            prediction.botton_state[4] = 0
        else:
            prediction.botton_state[4] = 1
        #生成标签
        if cb_v6.get() == 0:
            prediction.botton_state[5] = 0
        else:
            prediction.botton_state[5] = 1
        #传入其他三项
        prediction.com_2_scale_state = combobox_2.get()
        prediction.com_3_dre_state = combobox_3.get()
        prediction.dred_num = int(entry_2_11.get())
        #开始预测
        roll_text_1.insert('end', "\n开始预测...")
        predict_results = prediction.main()
        for predict_result in predict_results:
            roll_text_1.insert(
                'end', "\n  预测该条数据对应样本类型为:" +
                str(di.global_class_names[predict_result]))
        roll_text_1.insert('end', "\n预测完成!\n")
    return 0
Esempio n. 2
0
def final_predict():
    file_name = request.get_json()['file_name']
    algorithm_name = request.get_json()['algorithm_name']
    pred_type = request.get_json()['pred_type']
    features = request.get_json()['features']
    target = request.get_json()['target']
    inputType = request.get_json()['inputType']
    feature_values = request.get_json()['feature_values']
    result = prediction.main(file_name, algorithm_name, pred_type, features,
                             target, inputType, feature_values)
    return jsonify({"result": result.tolist()})
def start1():
    #click.echo("HELLO")
    df=pd.DataFrame(columns=["S&P 50","Nasdaq","Dow-Jones","Company","DateTime","Price","Price_Difference","Moving Average"])
    dj=[]
    nasdaq=[]
    sp=[]
    p_diff=[]

    u=scrape.url(df,dj,nasdaq,sp,p_diff)
    #output_file=df.to_csv('Stock2.csv')
    pred=prediction.main()
    return u,pred
Esempio n. 4
0
def start1():
    #click.echo("HELLO")
    df = pd.DataFrame(columns=[
        "S&P 50", "Nasdaq", "Dow-Jones", "Company", "DateTime", "Price"
    ])
    dj = []
    nasdaq = []
    sp = []
    p_diff = []

    u = scrape.url(df, dj, nasdaq, sp, p_diff)
    pred = prediction.main()
    return u, pred
Esempio n. 5
0
 def post(self):
     try:
         files = self.request.files
         file = files['file'][0]['body']
         mime = files['file'][0]['content_type']
         pictureid = str(uuid.uuid4())
         picturefullpath = "static/uploaddata/" + pictureid + ".jpeg"
         with open(picturefullpath, 'wb') as f:
             f.write(file)
         # クラス判定
         result = prediction.main(picturefullpath)
         # 結果を保存
         with open('database.tsv', 'a') as f:
             f.write(pictureid + "\t" + str(result) + "\n")
         self.render("imageclass.html", pictureid=pictureid, result=result)
         # self.write("ファイルを保存しました")
     except KeyError:
         self.render("imageclass.html", pictureid="", result="")
Esempio n. 6
0
def myCustomCalculation(cID, rID, cOR, y, m, d):
    dat = dt.datetime(year=y, month=m, day=d)
    print("\nCOMPANY:", cID, "RESTAURANT:", rID, "Delivery Date:", dat,
          '\n========================================================')
    PREDICTION = prediction.main(cID, rID, cOR, dat)
    return {'cID': cID, 'rID': rID, 'prediction': PREDICTION}
Esempio n. 7
0
def predictions_function():
    prediction.main()
Esempio n. 8
0
 def handle_pre(self, filedir, filename, index):
     result = main(filedir + "/", filename, index)
     value = result.get(index)
     return value
Esempio n. 9
0
def main():
    prediction.main()