Esempio n. 1
0
    def _build(self):
        labels = tf.reshape(
            tf.cast(self.placeholders['batch2'], dtype=tf.int64),
            [self.batch_size, 1])
        self.neg_samples, _, _ = (tf.nn.fixed_unigram_candidate_sampler(
            true_classes=labels,
            num_true=1,
            num_sampled=FLAGS.neg_sample_size,
            unique=True,
            range_max=len(self.degrees),
            distortion=0.75,
            unigrams=self.degrees.tolist()))

        self.outputs1 = tf.nn.embedding_lookup(self.target_embeds,
                                               self.inputs1)
        self.outputs2 = tf.nn.embedding_lookup(self.context_embeds,
                                               self.inputs2)
        self.outputs2_bias = tf.nn.embedding_lookup(self.context_bias,
                                                    self.inputs2)
        self.neg_outputs = tf.nn.embedding_lookup(self.context_embeds,
                                                  self.neg_samples)
        self.neg_outputs_bias = tf.nn.embedding_lookup(self.context_bias,
                                                       self.neg_samples)

        self.link_pred_layer = BipartiteEdgePredLayer(self.hidden_dim,
                                                      self.hidden_dim,
                                                      self.placeholders,
                                                      bilinear_weights=False)
Esempio n. 2
0
    def _build(self):
        labels = tf.reshape(
            tf.cast(self.placeholders['batch2'], dtype=tf.int64),
            [self.batch_size, 1])
        self.neg_samples, _, _ = (tf.nn.fixed_unigram_candidate_sampler(
            true_classes=labels,
            num_true=1,
            num_sampled=FLAGS.neg_sample_size,
            unique=False,
            range_max=len(self.degrees),
            distortion=0.75,
            unigrams=self.degrees.tolist()))

        # perform "convolution"
        #sample Sample neighbors to be the supportive fields for placeholders["batch1"]
        samples1, support_sizes1 = self.sample(self.inputs1, self.layer_infos)
        #sample Sample neighbors to be the supportive fields for placeholders["batch2"]
        samples2, support_sizes2 = self.sample(self.inputs2, self.layer_infos)
        num_samples = [
            layer_info.num_samples for layer_info in self.layer_infos
        ]

        self.outputs1, self.aggregators = self.aggregate(
            samples1, [self.features],
            self.dims,
            num_samples,
            support_sizes1,
            concat=self.concat,
            model_size=self.model_size)
        self.outputs2, _ = self.aggregate(samples2, [self.features],
                                          self.dims,
                                          num_samples,
                                          support_sizes2,
                                          aggregators=self.aggregators,
                                          concat=self.concat,
                                          model_size=self.model_size)

        neg_samples, neg_support_sizes = self.sample(self.neg_samples,
                                                     self.layer_infos,
                                                     FLAGS.neg_sample_size)
        self.neg_outputs, _ = self.aggregate(neg_samples, [self.features],
                                             self.dims,
                                             num_samples,
                                             neg_support_sizes,
                                             batch_size=FLAGS.neg_sample_size,
                                             aggregators=self.aggregators,
                                             concat=self.concat,
                                             model_size=self.model_size)

        dim_mult = 2 if self.concat else 1
        self.link_pred_layer = BipartiteEdgePredLayer(dim_mult * self.dims[-1],
                                                      dim_mult * self.dims[-1],
                                                      self.placeholders,
                                                      act=tf.nn.sigmoid,
                                                      bilinear_weights=False,
                                                      name='edge_predict')

        self.outputs1 = tf.nn.l2_normalize(self.outputs1, 1)
        self.outputs2 = tf.nn.l2_normalize(self.outputs2, 1)
        self.neg_outputs = tf.nn.l2_normalize(self.neg_outputs, 1)
Esempio n. 3
0
class Node2VecModel(GeneralizedModel):
    def __init__(self, placeholders, dict_size, degrees, name=None,
                 nodevec_dim=50, lr=0.001, **kwargs):
        """ Simple version of Node2Vec/DeepWalk algorithm.

        Args:
            dict_size: the total number of nodes.
            degrees: numpy array of node degrees, ordered as in the data's id_map
            nodevec_dim: dimension of the vector representation of node.
            lr: learning rate of optimizer.
        """

        super(Node2VecModel, self).__init__(**kwargs)

        self.placeholders = placeholders
        self.degrees = degrees
        self.inputs1 = placeholders["batch1"]
        self.inputs2 = placeholders["batch2"]

        self.batch_size = placeholders['batch_size']
        self.hidden_dim = nodevec_dim

        # following the tensorflow word2vec tutorial
        self.target_embeds = tf.Variable(
                tf.random_uniform([dict_size, nodevec_dim], -1, 1),
                name="target_embeds")
        self.context_embeds = tf.Variable(
                tf.truncated_normal([dict_size, nodevec_dim],
                stddev=1.0 / math.sqrt(nodevec_dim)),
                name="context_embeds")
        self.context_bias = tf.Variable(
                tf.zeros([dict_size]),
                name="context_bias")

        self.optimizer = tf.train.GradientDescentOptimizer(learning_rate=lr)

        self.build()

    def _build(self):
        labels = tf.reshape(
                tf.cast(self.placeholders['batch2'], dtype=tf.int64),
                [self.batch_size, 1])
        self.neg_samples, _, _ = (tf.nn.fixed_unigram_candidate_sampler(
            true_classes=labels,
            num_true=1,
            num_sampled=FLAGS.neg_sample_size,
            unique=True,
            range_max=len(self.degrees),
            distortion=0.75,
            unigrams=self.degrees.tolist()))

        self.outputs1 = tf.nn.embedding_lookup(self.target_embeds, self.inputs1)
        self.outputs2 = tf.nn.embedding_lookup(self.context_embeds, self.inputs2)
        self.outputs2_bias = tf.nn.embedding_lookup(self.context_bias, self.inputs2)
        self.neg_outputs = tf.nn.embedding_lookup(self.context_embeds, self.neg_samples)
        self.neg_outputs_bias = tf.nn.embedding_lookup(self.context_bias, self.neg_samples)

        self.link_pred_layer = BipartiteEdgePredLayer(self.hidden_dim, self.hidden_dim,
                self.placeholders, bilinear_weights=False)

    def build(self):
        self._build()
        # TF graph management
        self._loss()
        self._minimize()
        self._accuracy()

    def _minimize(self):
        self.opt_op = self.optimizer.minimize(self.loss)

    def _loss(self):
        aff = tf.reduce_sum(tf.multiply(self.outputs1, self.outputs2), 1) + self.outputs2_bias
        neg_aff = tf.matmul(self.outputs1, tf.transpose(self.neg_outputs)) + self.neg_outputs_bias
        true_xent = tf.nn.sigmoid_cross_entropy_with_logits(
                labels=tf.ones_like(aff), logits=aff)
        negative_xent = tf.nn.sigmoid_cross_entropy_with_logits(
                labels=tf.zeros_like(neg_aff), logits=neg_aff)
        loss = tf.reduce_sum(true_xent) + tf.reduce_sum(negative_xent)
        self.loss = loss / tf.cast(self.batch_size, tf.float32)
        tf.summary.scalar('loss', self.loss)
        
    def _accuracy(self):
        # shape: [batch_size]
        aff = self.link_pred_layer.affinity(self.outputs1, self.outputs2)
       # shape : [batch_size x num_neg_samples]
        self.neg_aff = self.link_pred_layer.neg_cost(self.outputs1, self.neg_outputs)
        self.neg_aff = tf.reshape(self.neg_aff, [self.batch_size, FLAGS.neg_sample_size])
        _aff = tf.expand_dims(aff, axis=1)
        self.aff_all = tf.concat(axis=1, values=[self.neg_aff, _aff])
        size = tf.shape(self.aff_all)[1]
        _, indices_of_ranks = tf.nn.top_k(self.aff_all, k=size)
        _, self.ranks = tf.nn.top_k(-indices_of_ranks, k=size)
        self.mrr = tf.reduce_mean(tf.div(1.0, tf.cast(self.ranks[:, -1] + 1, tf.float32)))
        tf.summary.scalar('mrr', self.mrr)
Esempio n. 4
0
class SampleAndAggregate(GeneralizedModel):
    """
    Base implementation of unsupervised GraphSAGE
    """

    def __init__(self, placeholders, features, adj, degrees,
            layer_infos, concat=True, aggregator_type="mean", 
            model_size="small", identity_dim=0,
            **kwargs):
        '''
        Args:
            - placeholders: Stanford TensorFlow placeholder object.
            - features: Numpy array with node features. 
                        NOTE: Pass a None object to train in featureless mode (identity features for nodes)!
            - adj: Numpy array with adjacency lists (padded with random re-samples)
            - degrees: Numpy array with node degrees. 
            - layer_infos: List of SAGEInfo namedtuples that describe the parameters of all 
                   the recursive layers. See SAGEInfo definition above.
            - concat: whether to concatenate during recursive iterations
            - aggregator_type: how to aggregate neighbor information
            - model_size: one of "small" and "big"
            - identity_dim: Set to positive int to use identity features (slow and cannot generalize, but better accuracy)
        '''
        super(SampleAndAggregate, self).__init__(**kwargs)
        if aggregator_type == "mean":
            self.aggregator_cls = MeanAggregator
        elif aggregator_type == "seq":
            self.aggregator_cls = SeqAggregator
        elif aggregator_type == "maxpool":
            self.aggregator_cls = MaxPoolingAggregator
        elif aggregator_type == "meanpool":
            self.aggregator_cls = MeanPoolingAggregator
        elif aggregator_type == "gcn":
            self.aggregator_cls = GCNAggregator
        else:
            raise Exception("Unknown aggregator: ", self.aggregator_cls)

        # get info from placeholders...
        self.inputs1 = placeholders["batch1"]
        self.inputs2 = placeholders["batch2"]
        self.model_size = model_size
        self.adj_info = adj
        if identity_dim > 0:
           self.embeds = tf.get_variable("node_embeddings", [adj.get_shape().as_list()[0], identity_dim])
        else:
           self.embeds = None
        if features is None: 
            if identity_dim == 0:
                raise Exception("Must have a positive value for identity feature dimension if no input features given.")
            self.features = self.embeds
        else:
            self.features = tf.Variable(tf.constant(features, dtype=tf.float32), trainable=False)
            if not self.embeds is None:
                self.features = tf.concat([self.embeds, self.features], axis=1)
        self.degrees = degrees
        self.concat = concat

        self.dims = [(0 if features is None else features.shape[1]) + identity_dim]
        self.dims.extend([layer_infos[i].output_dim for i in range(len(layer_infos))])
        self.batch_size = placeholders["batch_size"]
        self.placeholders = placeholders
        self.layer_infos = layer_infos

        self.optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate)

        self.build()

    def sample(self, inputs, layer_infos, batch_size=None):
        """ Sample neighbors to be the supportive fields for multi-layer convolutions.

        Args:
            inputs: batch inputs
            batch_size: the number of inputs (different for batch inputs and negative samples).
        """
        
        if batch_size is None:
            batch_size = self.batch_size
        samples = [inputs]
        # size of convolution support at each layer per node
        support_size = 1
        support_sizes = [support_size]
        for k in range(len(layer_infos)):
            t = len(layer_infos) - k - 1
            support_size *= layer_infos[t].num_samples
            sampler = layer_infos[t].neigh_sampler
            node = sampler((samples[k], layer_infos[t].num_samples))
            samples.append(tf.reshape(node, [support_size * batch_size,]))
            support_sizes.append(support_size)
        return samples, support_sizes


    def aggregate(self, samples, input_features, dims, num_samples, support_sizes, batch_size=None,
            aggregators=None, name=None, concat=False, model_size="small"):
        """ At each layer, aggregate hidden representations of neighbors to compute the hidden representations 
            at next layer.
        Args:
            samples: a list of samples of variable hops away for convolving at each layer of the
                network. Length is the number of layers + 1. Each is a vector of node indices.
            input_features: the input features for each sample of various hops away.
            dims: a list of dimensions of the hidden representations from the input layer to the
                final layer. Length is the number of layers + 1.
            num_samples: list of number of samples for each layer.
            support_sizes: the number of nodes to gather information from for each layer.
            batch_size: the number of inputs (different for batch inputs and negative samples).
        Returns:
            The hidden representation at the final layer for all nodes in batch
        """

        if batch_size is None:
            batch_size = self.batch_size

        # length: number of layers + 1
        hidden = [tf.nn.embedding_lookup(input_features, node_samples) for node_samples in samples]
        new_agg = aggregators is None
        if new_agg:
            aggregators = []
        for layer in range(len(num_samples)):
            if new_agg:
                dim_mult = 2 if concat and (layer != 0) else 1
                # aggregator at current layer
                if layer == len(num_samples) - 1:
                    aggregator = self.aggregator_cls(dim_mult*dims[layer], dims[layer+1], act=lambda x : x,
                            dropout=self.placeholders['dropout'], 
                            name=name, concat=concat, model_size=model_size)
                else:
                    aggregator = self.aggregator_cls(dim_mult*dims[layer], dims[layer+1],
                            dropout=self.placeholders['dropout'], 
                            name=name, concat=concat, model_size=model_size)
                aggregators.append(aggregator)
            else:
                aggregator = aggregators[layer]
            # hidden representation at current layer for all support nodes that are various hops away
            next_hidden = []
            # as layer increases, the number of support nodes needed decreases
            for hop in range(len(num_samples) - layer):
                dim_mult = 2 if concat and (layer != 0) else 1
                neigh_dims = [batch_size * support_sizes[hop], 
                              num_samples[len(num_samples) - hop - 1], 
                              dim_mult*dims[layer]]
                h = aggregator((hidden[hop],
                                tf.reshape(hidden[hop + 1], neigh_dims)))
                next_hidden.append(h)
            hidden = next_hidden
        return hidden[0], aggregators

    def _build(self):
        labels = tf.reshape(
                tf.cast(self.placeholders['batch2'], dtype=tf.int64),
                [self.batch_size, 1])
        self.neg_samples, _, _ = (tf.nn.fixed_unigram_candidate_sampler(
            true_classes=labels,
            num_true=1,
            num_sampled=FLAGS.neg_sample_size,
            unique=False,
            range_max=len(self.degrees),
            distortion=0.75,
            unigrams=self.degrees.tolist()))

           
        # perform "convolution"
        samples1, support_sizes1 = self.sample(self.inputs1, self.layer_infos)
        samples2, support_sizes2 = self.sample(self.inputs2, self.layer_infos)
        num_samples = [layer_info.num_samples for layer_info in self.layer_infos]
        self.outputs1, self.aggregators = self.aggregate(samples1, [self.features], self.dims, num_samples,
                support_sizes1, concat=self.concat, model_size=self.model_size)
        self.outputs2, _ = self.aggregate(samples2, [self.features], self.dims, num_samples,
                support_sizes2, aggregators=self.aggregators, concat=self.concat,
                model_size=self.model_size)

        neg_samples, neg_support_sizes = self.sample(self.neg_samples, self.layer_infos,
            FLAGS.neg_sample_size)
        self.neg_outputs, _ = self.aggregate(neg_samples, [self.features], self.dims, num_samples,
                neg_support_sizes, batch_size=FLAGS.neg_sample_size, aggregators=self.aggregators,
                concat=self.concat, model_size=self.model_size)

        dim_mult = 2 if self.concat else 1
        self.link_pred_layer = BipartiteEdgePredLayer(dim_mult*self.dims[-1],
                dim_mult*self.dims[-1], self.placeholders, act=tf.nn.sigmoid, 
                bilinear_weights=False,
                name='edge_predict')

        self.outputs1 = tf.nn.l2_normalize(self.outputs1, 1)
        self.outputs2 = tf.nn.l2_normalize(self.outputs2, 1)
        self.neg_outputs = tf.nn.l2_normalize(self.neg_outputs, 1)

    def build(self):
        self._build()

        # TF graph management
        self._loss()
        self._accuracy()
        self.loss = self.loss / tf.cast(self.batch_size, tf.float32)
        grads_and_vars = self.optimizer.compute_gradients(self.loss)
        clipped_grads_and_vars = [(tf.clip_by_value(grad, -5.0, 5.0) if grad is not None else None, var) 
                for grad, var in grads_and_vars]
        self.grad, _ = clipped_grads_and_vars[0]
        self.opt_op = self.optimizer.apply_gradients(clipped_grads_and_vars)

    def _loss(self):
        for aggregator in self.aggregators:
            for var in aggregator.vars.values():
                self.loss += FLAGS.weight_decay * tf.nn.l2_loss(var)

        self.loss += self.link_pred_layer.loss(self.outputs1, self.outputs2, self.neg_outputs) 
        tf.summary.scalar('loss', self.loss)

    def _accuracy(self):
        # shape: [batch_size]
        aff = self.link_pred_layer.affinity(self.outputs1, self.outputs2)
        # shape : [batch_size x num_neg_samples]
        self.neg_aff = self.link_pred_layer.neg_cost(self.outputs1, self.neg_outputs)
        self.neg_aff = tf.reshape(self.neg_aff, [self.batch_size, FLAGS.neg_sample_size])
        _aff = tf.expand_dims(aff, axis=1)
        self.aff_all = tf.concat(axis=1, values=[self.neg_aff, _aff])
        size = tf.shape(self.aff_all)[1]
        _, indices_of_ranks = tf.nn.top_k(self.aff_all, k=size)
        _, self.ranks = tf.nn.top_k(-indices_of_ranks, k=size)
        self.mrr = tf.reduce_mean(tf.div(1.0, tf.cast(self.ranks[:, -1] + 1, tf.float32)))
        tf.summary.scalar('mrr', self.mrr)