def webhook(): try: ml_prediction except NameError: ml_prediction = Prediction(MODEL_DIR) ml_prediction.load_model() answer = '' if request.method == 'POST': try: data = json.loads(request.data) bot_id = data['recipient']['id'] bot_name = data['recipient']['name'] recipient = data['from'] service = data['serviceUrl'] sender = data['conversation']['id'] text = data['text'] bot.send_message(bot_id, bot_name, recipient, service, sender, ml_prediction.response(text, sender)) except Exception as e: print(e) if request.method == 'GET': question = request.args.get('q') answer = ml_prediction.response(question if question else 'Hi') return 'Code: 200. {}'.format(answer)
def train(): if request.method == 'POST': try: intents_file = upload_file(request) except Exception as e: return "Error: {}".format(e) if request.method == 'GET': input_file = request.args.get('file') intents_file = input_file if input_file else "intents.json" ml = Train(intents_file, MODEL_DIR) try: ml.training() ml_prediction = Prediction(MODEL_DIR) ml_prediction.load_model() return "Train is completed" except Exception as e: return "Traing is failed {}".format(str(e))
def webhook(): try: ml_prediction except NameError: ml_prediction = Prediction(MODEL_DIR) ml_prediction.load_model() answer = '' if request.method == 'POST': try: data = json.loads(request.data) bot_id = data['recipient']['id'] bot_name = data['recipient']['name'] recipient = data['from'] service = data['serviceUrl'] sender = data['conversation']['id'] text = data['text'] answer = ml_prediction.response(text, sender) if answer: if answer.endswith('.png'): url = request.url_root + app.static_url_path + '/' + answer bot.send_media(bot_id, bot_name, recipient, service, sender, 'image/png', url) else: bot.send_message(bot_id, bot_name, recipient, service, sender, answer) else: bot.send_message(bot_id, bot_name, recipient, service, sender, 'Sorry, I do not understand.') url = request.url_root + app.static_url_path + '/monkey.gif' bot.send_media(bot_id, bot_name, recipient, service, sender, 'image/gif', url) except Exception as e: print(e) if request.method == 'GET': question = request.args.get('q') answer = ml_prediction.response(question if question else 'Hi') if answer: if answer.endswith('.png'): return app.send_static_file(answer) return answer return app.send_static_file('monkey.gif')
class MedicalQADataset(Dataset): """自定义医疗QA数据集""" def __init__(self, dataset_ids): self.dataset_ids = dataset_ids def __getitem__(self, item): return self.dataset_ids[item] def __len__(self): return len(self.dataset_ids) if __name__ == "__main__": # 测试predict是否OK from prediction import Prediction model = Prediction() model.load_model() result = model.predict( department='', title='孕妇经常胃痛会影响到胎儿吗', ask='"我怀上五个多月了,自从怀上以来就经常胃痛(两个胸之间往下一点儿是胃吧?)有时痛十几分钟,有时痛' '半个钟,每次都痛得好厉害,不过痛过这一阵之后就不痛了,我怀上初期饮食不规律,经常吃不下东西,会不' '会是这样引发的呀?我好忧心对胎儿有影响,该怎么办呢?可有食疗的方法可以纾解一下痛呢?"') print(result) exit(0)