Esempio n. 1
0
    def sim(self, states, sensor_std, plotType, plotBool, printBool, maxIter=20):
        """
        使用模拟的观测值验证算法的准确性
        :param states: 【list】模拟的真实状态,可以有多个不同的状态
        :param sensor_std: 【float】sensor的噪声标准差[mG]
        :param plotType: 【tuple】描绘位置的分量 'xy' or 'yz'
        :param plotBool: 【bool】是否绘图
        :param printBool: 【bool】是否打印输出
        :param maxIter: 【int】最大迭代次数
        :return: 【tuple】 位置[x, y, z]和姿态ez的误差百分比
        """
        # self.ukf.x = state0.copy()  # 初始值
        state = states[0]  # 真实值
        # simData = self.generate_data(state, sensor_std, printBool)
        simData = generate_data(self.measureNum, state, sensor_std, printBool)

        err_pos, err_em = (0, 0)
        for i in range(maxIter):
            if plotBool:
                print('=========={}=========='.format(i))
                plt.ion()
                plotP(self, state, i, plotType)
                if i == maxIter - 1:
                    plt.ioff()
                    plt.show()
            self.run(simData, printBool)

            posTruth, emTruth = state[:3], q2R(state[3: 7])[:, -1]
            pos, em = self.ukf.x[:3], q2R(self.ukf.x[3: 7])[:, -1]
            err_pos = np.linalg.norm(pos - posTruth) / np.linalg.norm(posTruth)
            err_em = np.linalg.norm(em - emTruth)     # 方向矢量本身是归一化的
        print('err_pos={:.0%}, err_em={:.0%}'.format(err_pos, err_em))
        return (err_pos, err_em)
Esempio n. 2
0
def sim(states,
        state0,
        sensor_std,
        plotType,
        plotBool,
        printBool,
        maxIter=100):
    '''
    使用模拟的观测值验证算法的准确性
    :param states: 模拟的真实状态
    :param state0: 模拟的初始值
    :param sensor_std: sensor的噪声标准差[mG]
    :param plotType: 【tuple】描绘位置的分量 'xy' or 'yz'
    :param plotBool: 【bool】是否绘图
    :param printBool: 【bool】是否打印输出
    :param maxIter: 【int】最大迭代次数
    :return: 【tuple】 位置[x, y, z]和姿态ez的误差百分比
    '''
    m, n = 9, 7
    for i in range(1):
        # run
        output_data = generate_data(m, states[i], sensor_std, printBool)
        LM(state0, output_data, n, maxIter, printBool)

        if plotBool:
            # plot pos and em
            # 最大化窗口
            mng = plt.get_current_fig_manager()
            mng.window.state('zoomed')
            iters = len(poss)
            for j in range(iters):
                state00 = np.concatenate((poss[j], ems[j]))
                plt.ion()
                plotPos(state00, states[i], j, plotType)
                if j == iters - 1:
                    plt.ioff()
                    plt.show()
            # plotLM(residual_memory, us)

        posTruth, emTruth = states[0][:3], q2R(states[0][3:7])[:, -1]
        err_pos = np.linalg.norm(poss[-1] -
                                 posTruth) / np.linalg.norm(posTruth)
        err_em = np.linalg.norm(q2R(ems[-1])[:, -1] - emTruth)  # 方向矢量本身是归一化的
        print('pos={}, emz={}: err_pos={:.0%}, err_em={:.0%}'.format(
            np.round(posTruth, 3), np.round(emTruth, 3), err_pos, err_em))
        residual_memory.clear()
        us.clear()
        poss.clear()
        ems.clear()
        return (err_pos, err_em)
Esempio n. 3
0
    def update(self, output_data):
        fitness = []
        for it in range(max_iter):
            w = ws + (we - ws) * (it / max_iter)
            for pi in range(pN):
                # 更新每个粒子的位置
                self.V[pi] = w * self.V[pi] + c1 * random.uniform(0, 1) * (self.pbest[pi] - self.X[pi]) + c2 * random.uniform(0, 1) * (self.gbest - self.X[pi])
                self.X[pi] += self.V[pi]
                # 检查是否越界
                for j in range(3):
                    self.X[pi][j] = max(self.posMin, self.X[pi][j])
                    self.X[pi][j] = min(self.posMax, self.X[pi][j])

                # 更新pbest和gbest
                tmp = self.fun(self.X[pi], output_data)
                if tmp < self.pCost[pi]:
                    self.pCost[pi] = tmp
                    self.pbest[pi] = self.X[pi]
                if tmp < self.gCost:
                    self.gCost = tmp
                    self.gbest = self.X[pi]

            fitness.append(self.gCost)
            pos = self.gbest[:3]
            ez = q2R(self.gbest[3:7])[:,-1]
            print('i={}: pos={}, ez={}, cost={}'.format(it + 1, np.round(pos, 3), np.round(ez, 3), self.gCost))
Esempio n. 4
0
    def __init__(self, sensor_std, state0, state):
        '''
        预测量:x, y, z, q0, q1, q2, q3
        :param sensor_std:【float】sensor的噪声标准差[μV]
        :param state0: 【np.array】初始值 (7,)
        :param state: 【np.array】预测值 (7,)
        '''
        self.stateNum = 7  # 预测量:x, y, z, q0, q1, q2, q3
        self.dt = 0.01  # 时间间隔[s]

        self.points = MerweScaledSigmaPoints(n=self.stateNum,
                                             alpha=0.3,
                                             beta=2.,
                                             kappa=3 - self.stateNum)
        self.ukf = UKF(dim_x=self.stateNum,
                       dim_z=self.measureNum,
                       dt=self.dt,
                       points=self.points,
                       fx=self.f,
                       hx=self.h)
        self.ukf.x = state0.copy()  # 初始值
        self.x0 = state  # 计算NEES的真实值

        self.ukf.R *= sensor_std
        self.ukf.P = np.eye(self.stateNum) * 0.01
        for i in range(3, 7):
            self.ukf.P[i, i] = 0.01
        self.ukf.Q = np.eye(
            self.stateNum) * 0.001 * self.dt  # 将速度作为过程噪声来源,Qi = [v*dt]
        for i in range(3, 7):
            self.ukf.Q[i, i] = 0.01  # 四元数的过程误差

        self.pos = (round(self.ukf.x[0], 3), round(self.ukf.x[1],
                                                   3), round(self.ukf.x[2], 3))
        self.m = q2R(self.ukf.x[3:7])[:, -1]
Esempio n. 5
0
 def h(self, state):
     dArray0 = state[:3] - self.coilArray
     em2 = np.array(q2R(state[3:7]))[:, -1]
     E = np.zeros(self.measureNum)
     for i, d in enumerate(dArray0):
         # E[i * 3] = inducedVolatage(d=d, em1=(1, 0, 0), em2=em2)
         # E[i * 3 + 1] = inducedVolatage(d=d, em1=(0, 1, 0), em2=em2)
         # E[i * 3 + 2] = inducedVolatage(d=d, em1=(0, 0, 1), em2=em2)
         E[i] = inducedVolatage(d=d, em1=(0, 0, 1), em2=em2)
     return E
Esempio n. 6
0
    def statePrint(self, ):
        self.pos = np.round(self.ukf.x[:3], 3)
        self.m = np.round(q2R(self.ukf.x[3:7])[:, -1], 3)

        timeCost = (datetime.datetime.now() - self.t0).total_seconds()
        Estate = self.h(self.ukf.x)  # 计算每个状态对应的感应电压
        # 计算NEES值
        x = self.x0 - self.ukf.x
        nees = np.dot(x.T, np.linalg.inv(self.ukf.P)).dot(x)
        print(
            'pos={}m, emz={}, Emax={:.2f}, Emin={:.2f}, NEES={:.1f}, timeCost={:.3f}s'
            .format(self.pos, self.m, max(abs(Estate)), min(abs(Estate)), nees,
                    timeCost))
Esempio n. 7
0
def generateEsim(state, sensor_std, maxNum=50):
    '''
    根据胶囊的状态给出接收线圈的感应电压模拟值
    :param state: 【np.array】 胶囊的真实状态 (7, )
    :param maxNum: 【int】最大数据量
    :param sensor_std: 【float】传感器噪声,此处指感应电压的采样噪声[μV]
    :return: 【np.array】感应电压模拟值 (Tracker.measureNum, maxNum)
    '''
    E = np.zeros(Tracker.measureNum)
    Esim = np.zeros((Tracker.measureNum, maxNum))
    em2Sim = q2R(state[3:7])[:, -1]
    dArray = state[:3] - Tracker.coilArray
    for i, d in enumerate(dArray):
        E[i] = inducedVolatage(d=d, em2=em2Sim)  # 单向线圈阵列产生的感应电压中间值

    for j in range(Tracker.measureNum):
        Esim[j, :] = np.random.normal(E[j], sensor_std, maxNum)

    return Esim
Esempio n. 8
0
def h0(state):
    '''
    胶囊只有内一个磁sensor
    :param state: 胶囊的位姿状态
    :param EPM: 外部大磁体的朝向
    :return: 胶囊内imu+磁传感器的读数
    '''
    pos, q = state[0:3], state[3:7]
    q /= np.linalg.norm(q)
    R = q2R(q)
    emz = R[:, -1]  # 重力矢量在胶囊坐标系下的坐标

    # 外部大磁体
    EPMNorm = np.linalg.norm(EPM_ORI)
    eEPM = EPM_ORI / EPMNorm
    r = pos.reshape(3, 1) + EPM_POS
    rNorm = np.linalg.norm(r)
    er = r / rNorm

    # 下线圈
    eCOIL = np.array([[0, 0, 1]]).T
    rCOIL = pos.reshape(3, 1) + COIL_POS
    rCOILNorm = np.linalg.norm(rCOIL)
    erCOIL = rCOIL / rCOILNorm

    # EPM坐标系下sensor的B值[Gs]
    B0 = MOMENT * np.dot(rNorm**(
        -3), np.subtract(3 * np.dot(np.inner(er, eEPM), er), eEPM)) / 1000
    Bi = COIL_MOMENT * np.dot(
        rCOILNorm**(-3),
        np.subtract(3 * np.dot(np.inner(erCOIL, eCOIL), erCOIL), eCOIL)) / 1000

    # 变换到胶囊坐标系下的sensor读数
    B0s = np.dot(R, B0)
    B0s[-1] *= -1

    Bis = np.dot(R, Bi)
    Bis[-1] *= -1

    # 加速度计的读数
    a_s = emz

    return np.concatenate((a_s, B0s.reshape(-1), Bis.reshape(-1)))
Esempio n. 9
0
    def generate_data(self, state, sensor_std, printBool):
        """
        生成模拟数据
        :param state: 【np.array】模拟的胶囊状态 (m,)
        :param sensor_std:【float】磁传感器的噪声标准差 [mG]
        :param printBool: 【bool】是否打印输出
        :return: 【np.array】模拟的B值 + 加速度计的数值, (num_data, )
        """
        Bmid = h(state)[:-2]  # 模拟B值数据的中间值
        Bsim = np.zeros(SLAVES * 3)
        for j in range(SLAVES * 3):
            Bsim[j] = np.random.normal(Bmid[j], sensor_std, 1)

        R = q2R(state[3: 7])
        accSim = R[:, -1]
        if printBool:
            print('Bmid={}'.format(np.round(Bmid, 0)))
            print('Bsim={}'.format(np.round(Bsim, 0)))
            print('truth: pos={}m, e_moment={}\n'.format(state[:3], np.round(accSim, 3)))
        return np.concatenate((Bsim, accSim))
Esempio n. 10
0
    def run(self, z, printBool):
        pos = np.round(self.ukf.x[:3], 3)
        em = q2R(self.ukf.x[3: 7])[:, -1]
        timeCost = (datetime.datetime.now() - self.t0).total_seconds()
        if printBool:
            print(r'pos={}m, em={}, w={}, timeCost={:.3f}s'.format(pos, np.round(em, 3),
                                                                   np.round(self.ukf.x[-3:], 3), timeCost))
        self.t0 = datetime.datetime.now()

        # 使用IMU的数据更新滤波器
        # for i in range(20):
        #     self.mp.IMUupdate(z[6: 9], z[-3:])
        #     emq = q2R(self.mp.q)[-1]
        # print(r'IMU update: pos={}m, em={}, w={}'.format(pos, np.round(emq, 3), np.round(z[6: 9], 3)))
        # self.ukf.x[3: 7] = self.mp.q
        # self.ukf.x[7:] = z[6: 9]

        # 使用磁传感器的数据更新滤波器
        self.ukf.predict()
        self.ukf.update(z)
Esempio n. 11
0
def h(state):
    '''
    以外部大磁体为参考系,得出胶囊内sensor的读数
    :param state: 胶囊的位姿状态
    :return: 两个sensor的读数 + 胶囊z轴朝向 (9, )
    '''
    EPMNorm = np.linalg.norm(EPM_ORI)
    eEPM = EPM_ORI / EPMNorm

    pos, q = state[0:3], state[3:7]
    q /= np.linalg.norm(q)
    R = q2R(q)
    emz = R[:, -1]  # 重力矢量在胶囊坐标系下的坐标
    d = np.dot(R.T, SENSORLOC * 0.5)  # 胶囊坐标系下的sensor位置矢量转换到EPM坐标系

    r1 = pos.reshape(3, 1) + d + EPM_POS
    r2 = pos.reshape(3, 1) - d + EPM_POS
    r1Norm = np.linalg.norm(r1)
    r2Norm = np.linalg.norm(r2)
    er1 = r1 / r1Norm
    er2 = r2 / r2Norm

    # EPM坐标系下每个sensor的B值[Gs]
    B1 = MOMENT * np.dot(
        r1Norm**(-3), np.subtract(3 * np.dot(np.inner(er1, eEPM), er1),
                                  eEPM)) / 1000
    B2 = MOMENT * np.dot(
        r2Norm**(-3), np.subtract(3 * np.dot(np.inner(er2, eEPM), er2),
                                  eEPM)) / 1000
    # 变换到胶囊坐标系下的sensor读数
    B1s = np.dot(R, B1)
    B1s[-1] *= -1
    B2s = np.dot(R, B2)

    # 加速度计的读数
    a_s = emz * g0

    return np.concatenate((a_s, B1s.reshape(-1), B2s.reshape(-1)))
Esempio n. 12
0
def stateOut(state, state2, t0, i, mse, printStr, printBool):
    '''
    输出算法的中间结果
    :param state:【np.array】 位置和姿态:x, y, z, q0, q1, q2, q3 (7,)
    :param state2: 【np.array】位置、姿态、磁矩、单步耗时和迭代步数 (10,)
    :param t0: 【float】 时间戳
    :param i: 【int】迭代步数
    :param mse: 【float】残差
    :return:
    '''
    if not printBool:
        return
    print(printStr)
    timeCost = (datetime.datetime.now() - t0).total_seconds()
    state2[:] = np.concatenate((state, np.array([MOMENT, timeCost,
                                                 i])))  # 输出的结果
    pos = np.round(state[:3], 3)
    R = q2R(state[3:7])
    emx = np.round(R[:, 0], 3)
    emz = np.round(R[:, -1], 3)
    sensor_pred = h0(state)[:6]
    print('i={}, pos={}m, q={}, emz={}, sensor_pred={}'.format(
        i, pos, np.round(state[3:7], 3), emz, np.round(sensor_pred, 2)))
Esempio n. 13
0
def sim(sensor_std,
        plotType,
        state0,
        plotBool,
        printBool,
        state=None,
        maxIter=50):
    """
    使用模拟的观测值验证算法的准确性
    :param state: 【list】模拟的真实状态,可以有多个不同的状态
    :param sensor_std: 【float】sensor的噪声标准差[mG]
    :param plotType: 【tuple】描绘位置的分量 'xy' or 'yz'
    :param plotBool: 【bool】是否绘图
    :param printBool: 【bool】是否打印输出
    :param maxIter: 【int】最大迭代次数
    :return: 【tuple】 位置[x, y, z]和姿态ez的误差百分比
    """
    if state is None:
        # state = [0, 0.2, 0.4, 0, 0, 1, 1]
        state = [0, 0.2, 0.4, 0.1, 0, 0, 0, 0, 1, 1]
    mp = Tracker(sensor_std, state0, state)
    E = np.zeros(mp.measureNum)
    Esim = np.zeros((mp.measureNum, maxIter))
    useSaved = False

    if useSaved:
        f = open('Esim.json', 'r')
        simData = json.load(f)
        for j in range(mp.measureNum):
            for k in range(maxIter):
                Esim[j, k] = simData.get('Esim{}-{}'.format(j, k), 0)
        print('++++read saved Esim data+++')
    else:
        std = sensor_std
        # em1Sim = q2R(state[3: 7])[:, -1]
        # dArray = state[:3] - mp.coilArray
        # for i, d in enumerate(dArray):
        #     # E[i * 3] = inducedVolatage(d=d, em1=(1, 0, 0), em2=em1Sim)  # x线圈阵列产生的感应电压中间值
        #     # E[i * 3 + 1] = inducedVolatage(d=d, em1=(0, 1, 0), em2=em1Sim)  # y线圈阵列产生的感应电压中间值
        #     # E[i * 3 + 2] = inducedVolatage(d=d, em1=(0, 0, 1), em2=em1Sim)  # z线圈阵列产生的感应电压中间值
        #     E[i] = inducedVolatage(d=d, em2=em1Sim)  # 单向线圈阵列产生的感应电压中间值
        E = mp.h(state)

        simData = {}
        for j in range(mp.measureNum):
            Esim[j, :] = np.random.normal(E[j], std, maxIter)
            # plt.hist(Esim[j, :], bins=25, histtype='bar', rwidth=2)
            # plt.show()
            for k in range(maxIter):
                simData['Esim{}-{}'.format(j, k)] = Esim[j, k]
        # 保存模拟数据到本地
        # f = open('Esim.json', 'w')
        # json.dump(simData, f, indent=4)
        # f.close()
        # print('++++save new Esim data+++')

    # 运行模拟数据
    for i in range(maxIter):
        if printBool:
            print('=========={}=========='.format(i))
        if plotBool:
            plt.ion()
            plotP(mp, state, i, plotType)
            if i == maxIter - 1:
                plt.ioff()
                plt.show()
        posPre = mp.ukf.x[:3]
        mp.run(printBool, Esim[:, i])
        delta_x = np.linalg.norm(mp.ukf.x[:3] - posPre)
        # print('delta_x={:.3e}'.format(delta_x))

        if delta_x < 1e-3:
            if plotBool:
                plt.ioff()
                plt.show()
            else:
                break

    err_pos = np.linalg.norm(mp.ukf.x[:3] - state[:3]) / np.linalg.norm(
        state[:3])
    err_em = np.linalg.norm(
        q2R(mp.ukf.x[6:10])[:, -1] - q2R(state[6:10])[:, -1])
    print('\nerr_std: pos={}, err_pos={:.0%}, err_em={:.0%}'.format(
        np.round(state[:3], 3), err_pos, err_em))
    return (err_pos, err_em)