import matplotlib.pyplot as plt kernel1 = np.ones((3, 3), np.uint8) img1 = cv2.imread( '/home/suryo/Image_Processing_Exercises/indictools-prep/resources/Kandanuword.jpg', 0) words_temp = np.zeros(img1.shape[:2], np.uint8) print img1.shape[:2] difference_values = [] clipped_values = [] clipped_local_minima = [] cv2.imshow('Original Image', img1) prep_img1 = prep2.binary_img(img1) cv2.imshow('Binarized Image', prep_img1) dilate1 = cv2.dilate(prep_img1, kernel1, iterations=1) cv2.imshow('Dilated', dilate1) contours, hierarchy = cv2.findContours(dilate1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) for xx in contours: cv2.drawContours(words_temp, [xx], -1, (255, 255, 255), -1) cv2.imshow('Contours from Dilated', words_temp) contours, hierarchy = cv2.findContours(words_temp, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) for c in contours: x, y, w, h = cv2.boundingRect(c)
""" import cv2 import prep2 import numpy as np kernel1 = np.ones((2, 2), np.uint8) kernel2 = np.ones((1, 1), np.uint8) all_heights = [] img = cv2.imread( '/home/suryo/Image_Processing_Exercises/indictools-prep/resources/2.jpg', 0) cv2.imshow('Output0', img) words_temp = np.zeros(img.shape[:2], np.uint8) binary = prep2.binary_img(img) sobelx = cv2.Sobel(binary, cv2.CV_64F, 1, 0, ksize=5) cv2.imshow('sobel', sobelx) abs_sobel64f = np.absolute(sobelx) sobel_8u = np.uint8(abs_sobel64f) dilate_sobel = cv2.dilate(sobel_8u, kernel2, iterations=1) cv2.imshow('dilate sobel', dilate_sobel) opening = cv2.morphologyEx(dilate_sobel, cv2.MORPH_OPEN, kernel1) cv2.imshow('open sobel', opening) dilation = cv2.dilate(binary, kernel2, iterations=1) erosion = cv2.dilate(dilation, kernel2, iterations=1)
@author: suryo """ import cv2 import prep2 import numpy as np kernel1 = np.ones((2,3),np.uint8) kernel2 = np.ones((1,1),np.uint8) all_heights = [] img = cv2.imread('/home/suryo/Image_Processing_Exercises/indictools-prep/resources/hi.png',0) cv2.imshow('Output0',img) words_temp = np.zeros(img.shape[:2],np.uint8) binary = prep2.binary_img(img) dilation = cv2.dilate(binary,kernel1,iterations = 1) erosion = cv2.dilate(dilation,kernel1,iterations = 1) cv2.imshow('d',erosion) contours, hierarchy = cv2.findContours(erosion,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) for xx in contours: cv2.drawContours(words_temp,[xx],-1,(255,255,255),-1) cv2.imshow('Outputtemp0',words_temp) contours, hierarchy = cv2.findContours(words_temp,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) for c in contours: x,y,w,h = cv2.boundingRect(c)
import prep2 import numpy as np import matplotlib.pyplot as plt kernel1 = np.ones((3,3),np.uint8) img1 = cv2.imread('/home/suryo/Image_Processing_Exercises/indictools-prep/resources/Kandanuword.jpg',0) words_temp = np.zeros(img1.shape[:2],np.uint8) print img1.shape[:2] difference_values =[] clipped_values= [] clipped_local_minima = [] cv2.imshow('Original Image',img1) prep_img1 = prep2.binary_img(img1) cv2.imshow('Binarized Image',prep_img1) dilate1 = cv2.dilate(prep_img1,kernel1,iterations = 1) cv2.imshow('Dilated',dilate1) contours, hierarchy = cv2.findContours(dilate1,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) for xx in contours: cv2.drawContours(words_temp,[xx],-1,(255,255,255),-1) cv2.imshow('Contours from Dilated',words_temp) contours, hierarchy = cv2.findContours(words_temp,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) for c in contours: x,y,w,h = cv2.boundingRect(c) #cv2.rectangle(prep_img1,(x,y),(x+w,y+h),(255,0,0),1)