def findNextBestCovariateIdDEBUG(fullCovMatrix, trainData, trainLabels,
                                 misclassificationCosts, definedFeatureCosts,
                                 idsGivenCovariates, observedCovariates,
                                 allFeatureListsInOrder):
    assert (trainData.shape[0] == trainLabels.shape[0])
    p = trainData.shape[1]

    remainingCovariates = set(numpy.arange(p)) - set(idsGivenCovariates)
    fixedQueryCovariates = numpy.asarray([], dtype=numpy.int)

    if len(remainingCovariates) == 0:
        # no new covariates can be acquired
        return None, float("inf")

    numberOfFeatureSets = len(allFeatureListsInOrder)
    currentIdForGivenFeatures = None

    for i in range(numberOfFeatureSets):
        if len(idsGivenCovariates) == len(allFeatureListsInOrder[i]):
            assert (numpy.all(
                numpy.equal(idsGivenCovariates, allFeatureListsInOrder[i])))
            currentIdForGivenFeatures = i
            break

    assert (currentIdForGivenFeatures is not None)

    bestLocalTotalExpectedFutureCosts = float("inf")

    for j in range(currentIdForGivenFeatures + 1, numberOfFeatureSets):
        idsNextCovariates = allFeatureListsInOrder[j]
        idsQueryCovariates = idsNextCovariates[
            idsGivenCovariates.shape[0]:idsNextCovariates.shape[0]]

        covariatesForPrediction = numpy.append(idsGivenCovariates,
                                               idsQueryCovariates)

        idsMarginalizeOutCovariates = numpy.arange(p)
        idsMarginalizeOutCovariates = numpy.delete(idsMarginalizeOutCovariates,
                                                   covariatesForPrediction)
        assert (len(
            set(idsMarginalizeOutCovariates) | set(idsQueryCovariates)
            | set(idsGivenCovariates)) == p)

        predictionModel, _ = prepareFeatureSets.getOptimalTrainedModel(
            trainData, trainLabels, covariatesForPrediction)

        totalExpectedFutureCosts = getTotalExpectedFutureCosts(
            fullCovMatrix, predictionModel, misclassificationCosts,
            definedFeatureCosts, idsQueryCovariates,
            idsMarginalizeOutCovariates, idsGivenCovariates,
            observedCovariates)
        if totalExpectedFutureCosts < bestLocalTotalExpectedFutureCosts:
            bestLocalTotalExpectedFutureCosts = totalExpectedFutureCosts

        fixedQueryCovariates = numpy.append(fixedQueryCovariates,
                                            idsQueryCovariates)

    return fixedQueryCovariates[0], bestLocalTotalExpectedFutureCosts
def findNextBestCovariateIdForDebugging(fullCovMatrix, trainData, trainLabels,
                                        misclassificationCosts,
                                        definedFeatureCosts,
                                        idsGivenCovariates,
                                        observedCovariates):
    assert (trainData.shape[0] == trainLabels.shape[0])
    p = trainData.shape[1]

    remainingCovariates = set(numpy.arange(p)) - set(idsGivenCovariates)

    fixedQueryCovariates = numpy.asarray([], dtype=numpy.int)

    globalBestTotalExpectedFutureCosts = float("inf")

    if len(remainingCovariates) == 0:
        # no new covariates can be acquired
        return None, float("inf")

    while len(remainingCovariates) > 0:
        bestLocalNextQueryId = None
        bestLocalTotalExpectedFutureCosts = float("inf")

        for j in remainingCovariates:
            idsQueryCovariates = numpy.append(fixedQueryCovariates, [j])
            covariatesForPrediction = numpy.append(idsGivenCovariates,
                                                   idsQueryCovariates)

            idsMarginalizeOutCovariates = numpy.arange(p)
            idsMarginalizeOutCovariates = numpy.delete(
                idsMarginalizeOutCovariates, covariatesForPrediction)
            assert (len(
                set(idsMarginalizeOutCovariates) | set(idsQueryCovariates)
                | set(idsGivenCovariates)) == p)

            predictionModel, _ = prepareFeatureSets.getOptimalTrainedModel(
                trainData, trainLabels, covariatesForPrediction)

            totalExpectedFutureCosts = getTotalExpectedFutureCosts(
                fullCovMatrix, predictionModel, misclassificationCosts,
                definedFeatureCosts, idsQueryCovariates,
                idsMarginalizeOutCovariates, idsGivenCovariates,
                observedCovariates)
            if totalExpectedFutureCosts < bestLocalTotalExpectedFutureCosts:
                bestLocalNextQueryId = j
                bestLocalTotalExpectedFutureCosts = totalExpectedFutureCosts

        fixedQueryCovariates = numpy.append(fixedQueryCovariates,
                                            [bestLocalNextQueryId])
        remainingCovariates.remove(bestLocalNextQueryId)

        if bestLocalTotalExpectedFutureCosts < globalBestTotalExpectedFutureCosts:
            globalBestTotalExpectedFutureCosts = bestLocalTotalExpectedFutureCosts

    return fixedQueryCovariates[0], globalBestTotalExpectedFutureCosts
def getBayesRiskFromCurrentTestSample(trainData, trainLabels, testSample,
                                      misclassificationCosts,
                                      selectedFeatureIds):
    predictionModel, holdOutDataAccuracyEstimate = prepareFeatureSets.getOptimalTrainedModel(
        trainData, trainLabels, selectedFeatureIds)

    predictedProbs = predictionModel.predict_proba(testSample)
    print(predictedProbs)
    br = prepareFeatureSets.bayesRisk(predictedProbs, misclassificationCosts)
    print(br)
    assert (False)
    return prepareFeatureSets.bayesRisk(predictedProbs, misclassificationCosts)
def prepareForLinearSequence(trainDataFullCovariates, trainLabels, allData,
                             allFeatureListsInOrder):

    p = trainDataFullCovariates.shape[1]

    allPredictionModels = []
    allSamplerInfos = []
    numberOfFeatureSets = len(allFeatureListsInOrder)

    for i in range(numberOfFeatureSets):
        idsGivenCovariates = allFeatureListsInOrder[i]

        # print("******************** i = " + str(i) + " ***********************")

        # train classifier
        predictionModel, _ = prepareFeatureSets.getOptimalTrainedModel(
            trainDataFullCovariates, trainLabels, idsGivenCovariates)

        samplerInfo = []
        for j in range(i + 1, numberOfFeatureSets):
            idsNextCovariates = allFeatureListsInOrder[j]
            assert ((trainDataFullCovariates[:, idsNextCovariates]).shape[1] >
                    0)

            idsQueryCovariates = idsNextCovariates[
                idsGivenCovariates.shape[0]:idsNextCovariates.shape[0]]

            idsMarginalizeOutCovariates = numpy.arange(p)
            idsMarginalizeOutCovariates = numpy.delete(
                idsMarginalizeOutCovariates,
                numpy.hstack((idsQueryCovariates, idsGivenCovariates)))
            assert (len(
                set(idsMarginalizeOutCovariates) | set(idsQueryCovariates)
                | set(idsGivenCovariates)) == p)
            samplerInfo.append(
                (idsQueryCovariates, idsMarginalizeOutCovariates,
                 idsGivenCovariates))

        allSamplerInfos.append(samplerInfo)
        allPredictionModels.append(predictionModel)

    fullCovMatrix = numpy.cov(allData.transpose(), bias=True)

    return fullCovMatrix, allSamplerInfos, allPredictionModels
def fullDynamicGreedyMethodForDebugging(fullCovMatrix, trainData, trainLabels,
                                        testSample, misclassificationCosts,
                                        definedFeatureCosts, initialFeatureId):

    if initialFeatureId is None:
        idsGivenCovariates = numpy.asarray([], dtype=numpy.int)
    else:
        idsGivenCovariates = numpy.asarray([initialFeatureId], dtype=numpy.int)

    while (True):

        observedCovariates = testSample[idsGivenCovariates]
        currentPredictionModel, _ = prepareFeatureSets.getOptimalTrainedModel(
            trainData, trainLabels, idsGivenCovariates)
        currentBayesRisk = prepareFeatureSets.getBayesRiskSingleObservation(
            currentPredictionModel, misclassificationCosts, observedCovariates)

        bestNextQueryId, expectedTotalFutureCosts = findNextBestCovariateIdForDebugging(
            fullCovMatrix, trainData, trainLabels, misclassificationCosts,
            definedFeatureCosts, idsGivenCovariates, observedCovariates)

        if expectedTotalFutureCosts < currentBayesRisk:
            # acquire covariate "bestNextQueryId"
            idsGivenCovariates = numpy.append(idsGivenCovariates,
                                              [bestNextQueryId])
        else:
            # decide on class label
            predictedLabel = experimentHelper.getPredictionLabelSingleObservation(
                currentPredictionModel, observedCovariates)
            featureCosts = numpy.sum(definedFeatureCosts[idsGivenCovariates])
            print("covariateIds = " + str(idsGivenCovariates) +
                  "| costs of acquired covariates = " + str(featureCosts) +
                  " | bayes risk = " + str(currentBayesRisk))
            return idsGivenCovariates, featureCosts, predictedLabel

    return
Esempio n. 6
0
def evaluateConditionalDensity(trainDataFullCovariates, trainLabels, allData,
                               allFeatureListsInOrder, testData):

    allPredictionModels = []
    numberOfFeatureSets = len(allFeatureListsInOrder)

    for i in range(numberOfFeatureSets):
        idsGivenCovariates = allFeatureListsInOrder[i]
        predictionModel, _ = prepareFeatureSets.getOptimalTrainedModel(
            trainDataFullCovariates, trainLabels, idsGivenCovariates)
        allPredictionModels.append(predictionModel)

    for i in range(numberOfFeatureSets):
        idsGivenCovariates = allFeatureListsInOrder[i]

        if idsGivenCovariates.shape[0] != 6:
            continue

        print("---------------------------")
        print("idsGivenCovariates = ", idsGivenCovariates)
        for j in range(i + 1, numberOfFeatureSets):
            nextPredictionModel = allPredictionModels[j]
            idsNextCovariates = allFeatureListsInOrder[j]
            assert ((trainDataFullCovariates[:, idsNextCovariates]).shape[1] >
                    0)

            idsQueryCovariates = idsNextCovariates[
                idsGivenCovariates.shape[0]:idsNextCovariates.shape[0]]
            beta = nextPredictionModel.coef_[0]
            assert (beta.shape[0] == idsNextCovariates.shape[0])
            queryBetaPart = beta[idsGivenCovariates.shape[0]:idsNextCovariates.
                                 shape[0]]

            print("idsQueryCovariates = ", idsQueryCovariates)

            # train simple linear regression model
            sigma12TimesSigma22InvQueryPart, newCovMatrixQueryPart = dynamicAcquisition.getConditionalMeanAndVariance(
                allData, idsGivenCovariates, idsQueryCovariates)

            densityTrainDataCovariates = allData[:, idsGivenCovariates]
            densityTrainDataResponse = allData[:,
                                               idsQueryCovariates] @ queryBetaPart

            # print("densityTrainDataResponse average = ", numpy.average(densityTrainDataResponse))

            densityTestDataCovariates = testData[:, idsGivenCovariates]
            densityTestDataResponse = testData[:,
                                               idsQueryCovariates] @ queryBetaPart

            # train Gaussian process regression model
            # for lengthScale in [2.0, 1.0, 0.5]:
            for lengthScale in [100.0, 10.0, 1.0, 0.1, 0.001]:
                for alphaValue in [20.0, 10.0, 5.0]:
                    covFunc = sklearn.gaussian_process.kernels.DotProduct(
                        sigma_0=lengthScale)
                    # covFunc = sklearn.gaussian_process.kernels.RBF(length_scale = lengthScale)
                    GP = sklearn.gaussian_process.GaussianProcessRegressor(
                        kernel=covFunc,
                        alpha=alphaValue,
                        optimizer=None,
                        normalize_y=False)
                    # GP = sklearn.gaussian_process.GaussianProcessRegressor(kernel=sklearn.gaussian_process.kernels.RBF(), alpha=0.01, n_restarts_optimizer=5, normalize_y=False)
                    GP.fit(densityTrainDataCovariates,
                           densityTrainDataResponse)
                    # print("GP.kernel_.length_scale = ", GP.kernel_.length_scale)
                    print("lengthScale = " + str(lengthScale) +
                          ", alphaValue = " + str(alphaValue))
                    print("GP.log_marginal_likelihood_value_ = ",
                          GP.log_marginal_likelihood_value_)
                    heldOutLogLikelihoodGP, mseGP = evalHeldOutGP(
                        GP, densityTestDataCovariates, densityTestDataResponse)
                    print("heldOutLogLikelihoodGP = ", heldOutLogLikelihoodGP)

            heldOutLogLikelihoodNormal = 0.0
            mseNormal = 0.0
            for t in range(densityTestDataCovariates.shape[0]):
                observedCovariates = densityTestDataCovariates[t]
                meanQueryPart = numpy.matmul(sigma12TimesSigma22InvQueryPart,
                                             observedCovariates)
                mean = numpy.dot(queryBetaPart, meanQueryPart)
                variance = queryBetaPart @ newCovMatrixQueryPart @ queryBetaPart.transpose(
                )
                heldOutLogLikelihoodNormal += scipy.stats.norm.logpdf(
                    x=densityTestDataResponse[t],
                    loc=mean,
                    scale=numpy.sqrt(variance))
                mseNormal += numpy.square(mean - densityTestDataResponse[t])

            mseNormal = mseNormal / float(densityTestDataCovariates.shape[0])
            print("heldOutLogLikelihoodNormal = ", heldOutLogLikelihoodNormal)
            print("mseNormal = ", mseNormal)

    return
Esempio n. 7
0
def evaluateConditionalDensitySimple(trainDataFullCovariates, trainLabels,
                                     allData, testData):
    p = trainDataFullCovariates.shape[1]

    # idsGivenCovariates = numpy.arange(p-5)
    # idsNextCovariates = numpy.arange(p-4)

    idsGivenCovariates = numpy.arange(p - 3)
    idsNextCovariates = numpy.arange(p - 1)

    print("idsGivenCovariates = ", idsGivenCovariates)
    print("idsNextCovariates = ", idsNextCovariates)

    nextPredictionModel, _ = prepareFeatureSets.getOptimalTrainedModel(
        trainDataFullCovariates, trainLabels, idsNextCovariates)

    idsQueryCovariates = idsNextCovariates[idsGivenCovariates.
                                           shape[0]:idsNextCovariates.shape[0]]
    beta = nextPredictionModel.coef_[0]
    assert (beta.shape[0] == idsNextCovariates.shape[0])
    queryBetaPart = beta[idsGivenCovariates.shape[0]:idsNextCovariates.
                         shape[0]]

    densityTrainDataCovariates = allData[:, idsGivenCovariates]
    densityTrainDataResponse = allData[:, idsQueryCovariates] @ queryBetaPart

    print("idsQueryCovariates = ", idsQueryCovariates)

    # train simple linear regression model
    sigma12TimesSigma22InvQueryPart, newCovMatrixQueryPart = dynamicAcquisition.getConditionalMeanAndVariance(
        allData, idsGivenCovariates, idsQueryCovariates)

    # print("densityTrainDataResponse average = ", numpy.average(densityTrainDataResponse))

    densityTestDataCovariates = testData[:, idsGivenCovariates]
    densityTestDataResponse = testData[:, idsQueryCovariates] @ queryBetaPart

    # train Gaussian process regression model
    # for lengthScale in [2.0, 1.0, 0.5]:
    #     for lengthScale in [1.0]: # [10000.0, 100.0, 10.0, 1.0, 0.1, 0.001, 0.00001]:
    #         for alphaValue in [1.0]: # [100.0, 10.0, 1.0, 0.1, 0.001]:
    #             # covFunc = sklearn.gaussian_process.kernels.DotProduct(sigma_0 = lengthScale)
    #             covFunc = sklearn.gaussian_process.kernels.RBF(length_scale = lengthScale)
    #             GP = sklearn.gaussian_process.GaussianProcessRegressor(kernel=covFunc, alpha=alphaValue, optimizer=None, normalize_y=False)
    #             # GP = sklearn.gaussian_process.GaussianProcessRegressor(kernel=sklearn.gaussian_process.kernels.RBF(), alpha=0.01, n_restarts_optimizer=5, normalize_y=False)
    #             GP.fit(densityTrainDataCovariates, densityTrainDataResponse)
    #             # print("GP.kernel_.length_scale = ", GP.kernel_.length_scale)
    #             print("lengthScale = " + str(lengthScale) + ", alphaValue = " + str(alphaValue))
    #             # print("GP.log_marginal_likelihood_value_ = ", GP.log_marginal_likelihood_value_)
    #             heldOutLogLikelihoodGP, mseGP = evalHeldOutGP(GP, densityTestDataCovariates, densityTestDataResponse)
    #             # print("heldOutLogLikelihood (GP) = ", heldOutLogLikelihoodGP)
    #             print("MSE (GP) = ", mseGP)
    #             logLikelihoodTrainGP, mseTrainGP = evalHeldOutGP(GP, densityTrainDataCovariates, densityTrainDataResponse)
    #             # print("logLikelihoodTrain (GP) = ", logLikelihoodTrainGP)
    #             # print("mseTrain (GP)= ", mseTrainGP)
    #
    # train linear regression model
    # lrModel = sklearn.linear_model.LinearRegression()
    #     for alphaValue in [100.0, 10.0, 1.0, 0.1, 0.001, 0.0001, 0.00001]:
    #         print("alphaValue = ", alphaValue)
    #         # lrModel = sklearn.linear_model.Ridge(alpha = alphaValue)
    #         # lrModel.fit(densityTrainDataCovariates, densityTrainDataResponse)
    #
    #         lrModel = sklearn.neural_network.MLPRegressor(hidden_layer_sizes=100, alpha = alphaValue)
    #         lrModel.fit(densityTrainDataCovariates, densityTrainDataResponse)
    #         allMeansLR = lrModel.predict(densityTestDataCovariates)
    #         mseLR = numpy.mean(numpy.square(allMeansLR - densityTestDataResponse))
    #         print("MSE (linear regression) = ", mseLR)

    normalVariance = queryBetaPart @ newCovMatrixQueryPart @ queryBetaPart.transpose(
    )

    lengthScale = 2.0
    alphaValue = 100000.0  # 0.00001  corresponds to 1/sigma_noise
    # alphaValue = 1.0 # 1.0 / normalVariance

    BRModel(densityTrainDataCovariates, densityTrainDataResponse,
            densityTestDataCovariates, densityTestDataResponse, normalVariance)
    GPwithLinearMeanModel(densityTrainDataCovariates, densityTrainDataResponse,
                          densityTestDataCovariates, densityTestDataResponse,
                          lengthScale, alphaValue)

    heldOutLogLikelihoodNormal, mseNormal = evalHeldOutNormal(
        queryBetaPart, sigma12TimesSigma22InvQueryPart, newCovMatrixQueryPart,
        densityTestDataCovariates, densityTestDataResponse)
    print("heldOutLogLikelihoodNormal = ", heldOutLogLikelihoodNormal)
    print("mseNormal = ", mseNormal)

    logLikelihoodTrainNormal, mseTrainNormal = evalHeldOutNormal(
        queryBetaPart, sigma12TimesSigma22InvQueryPart, newCovMatrixQueryPart,
        densityTrainDataCovariates, densityTrainDataResponse)
    print("logLikelihoodTrainNormal = ", logLikelihoodTrainNormal)
    print("mseTrainNormal = ", mseTrainNormal)

    print("numpy.mean(densityTestDataResponse) = ",
          numpy.mean(densityTestDataResponse))
    print("mse of zero estimate = ",
          numpy.mean(numpy.square(densityTestDataResponse)))
    return
def fullDynamicGreedyMethodWithGoBack(fullCovMatrix, trainData, trainLabels,
                                      testSample, misclassificationCosts,
                                      definedFeatureCosts, initialFeatureId):

    if initialFeatureId is None:
        idsAllGivenCovariates = numpy.asarray([], dtype=numpy.int)
    else:
        idsAllGivenCovariates = numpy.asarray([initialFeatureId],
                                              dtype=numpy.int)

    lowestBayesRiskCovariateIds = numpy.asarray([], dtype=numpy.int)
    lowestBayesRiskClassifier, _ = prepareFeatureSets.getOptimalTrainedModel(
        trainData, trainLabels, lowestBayesRiskCovariateIds)
    lowestBayesRisk = prepareFeatureSets.getBayesRiskSingleObservation(
        lowestBayesRiskClassifier, misclassificationCosts,
        testSample[lowestBayesRiskCovariateIds])

    print("lowestBayesRisk = ", lowestBayesRisk)

    while (True):

        observedCovariates = testSample[idsAllGivenCovariates]
        currentPredictionModel, _ = prepareFeatureSets.getOptimalTrainedModel(
            trainData, trainLabels, idsAllGivenCovariates)
        currentBayesRisk = prepareFeatureSets.getBayesRiskSingleObservation(
            currentPredictionModel, misclassificationCosts, observedCovariates)

        print("idsGivenCovariates = " + str(idsAllGivenCovariates) +
              " | bayesRisk = " + str(currentBayesRisk))

        if currentBayesRisk < lowestBayesRisk:
            lowestBayesRisk = currentBayesRisk
            lowestBayesRiskClassifier = currentPredictionModel
            lowestBayesRiskCovariateIds = numpy.copy(idsAllGivenCovariates)

        bestNextQueryId, expectedTotalFutureCosts = findNextBestCovariateIdForDebugging(
            fullCovMatrix, trainData, trainLabels, misclassificationCosts,
            definedFeatureCosts, idsAllGivenCovariates, observedCovariates)

        if expectedTotalFutureCosts < lowestBayesRisk:
            # acquire covariate "bestNextQueryId"
            idsAllGivenCovariates = numpy.append(idsAllGivenCovariates,
                                                 [bestNextQueryId])
        else:
            #             lowestBayesRisk = float("inf")
            #             lowestBayesRiskClassifier = None
            #             lowestBayesRiskCovariateIds = None
            #
            #             # decide on class label
            #             print("NOW DECIDING ON CLASS LABEL")
            #             print("idsAllGivenCovariates = ", idsAllGivenCovariates)
            #             for j in range(len(idsAllGivenCovariates) + 1):
            #                 idsGivenCovariates = idsAllGivenCovariates[0:j]
            #                 observedCovariates = testSample[idsGivenCovariates]
            #                 predictionModel, _ = prepareFeatureSets.getOptimalTrainedModel(trainData, trainLabels, idsGivenCovariates)
            #                 bayesRisk = prepareFeatureSets.getBayesRiskSingleObservation(predictionModel, misclassificationCosts, observedCovariates)
            #                 print("idsGivenCovariates = " + str(idsGivenCovariates) + " | bayesRisk = " + str(bayesRisk))
            #                 if bayesRisk < lowestBayesRisk:
            #                     lowestBayesRisk = bayesRisk
            #                     lowestBayesRiskClassifier = predictionModel
            #                     lowestBayesRiskCovariateIds = idsGivenCovariates
            #
            #             if len(lowestBayesRiskCovariateIds) < len(idsAllGivenCovariates):
            #                 print("!!!! BEST CLASSIFIER REQUIRES LESS COVARIATES THAN REQUIRED !!!! ")

            predictedLabel = experimentHelper.getPredictionLabelSingleObservation(
                lowestBayesRiskClassifier,
                testSample[lowestBayesRiskCovariateIds])
            featureCosts = numpy.sum(
                definedFeatureCosts[idsAllGivenCovariates])
            print("used covariate ids = " + str(lowestBayesRiskCovariateIds) +
                  ", acquired covariateIds = " +
                  str(lowestBayesRiskCovariateIds) +
                  "| costs of acquired covariates = " + str(featureCosts) +
                  " | bayes risk = " + str(lowestBayesRisk))
            # return the ids of the acquired(!) covariates, its costs, and the predicted label (which is based on lowestBayesRiskCovariateIds)
            return idsAllGivenCovariates, featureCosts, predictedLabel

    return