def load_data(data_id, icus):
    x, y = data.load_icus(data_id, icus, data.targets[0])
    x = sequence.pad_sequences(x)
    y = np.asarray(y)

    skf = StratifiedKFold(n_splits=5, random_state=True)
    for i, (train_idx, test_idx) in enumerate(skf.split(x, y)):
        x_test = x[test_idx]
        y_test = y[test_idx]

    return x_test, y_test
Esempio n. 2
0
def main():
    # for k in ['a', 'b', 'c']:
    icu_names = ["", "Coronary", "Cardiac", "Medical", "Surgical"]
    for icu in [1, 2, 3, 4]:
        # for icu in [1]:
        filename = "uti-" + str(icu)
        print("Target: " + filename)
        x, y, icu_ids = data.load_icus("60", [icu], data.targets[0])

        # x = np.asarray(x)
        last_x = []
        for xi in x:
            last_x.append(xi[len(xi) - 1, :])
        last_x = np.asarray(last_x)
        y = np.asarray(y)
        y[y == 0] = -1

        # plot_heatmap(filename, last_x, y)
        heatmap(last_x, y, icu_names[icu] + " ICU - Raw Death Heatmap",
                data.targets[0])
Esempio n. 3
0
def main():
    model_names = 'ft-m3r', 'fc-m3r'
    for model_name in model_names:
        for icu in [1, 2, 3, 4]:
            m = model_name + "-" + str(icu)
            model = models.load_model("models/m1-" + m + ".h5",
                                      custom_objects={
                                          "precision": precision,
                                          "recall": recall,
                                          "fmeasure": fmeasure
                                      })
            gen_model = Model(input=model.input, output=model.layers[2].output)
            # print(gen_model.layers)

            x, y = data.load_icus("60", [icu], data.targets[0])
            x = sequence.pad_sequences(x)
            y = np.asarray(y)

            neural_x = gen_model.predict(x)
            if 'ft' in model_name:
                title = "Fine Tuning - "
            else:
                title = "Focused - "
            plot_heatmap(title + " UTI - " + str(icu), neural_x, y)
Esempio n. 4
0
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split

# Local imports

sys.path.append(
    "/home/tiago/Documentos/research/mestrado/Medical/medical/src/")
import models
import prepare_data as data
from models import precision, recall, fmeasure, Switch

###########
random_state = 13

# Load and split data
X, y, icu = data.load_icus("60", [1, 2, 3, 4], "", should_normalize=True)

x_train, x_test, y_train, y_test, icu_train, icu_test = train_test_split(
    X, y, icu, train_size=0.7, random_state=random_state, stratify=y)

x_train, x_val, y_train, y_val, icu_train, icu_val = train_test_split(
    x_train,
    y_train,
    icu_train,
    train_size=0.7,
    random_state=random_state,
    stratify=y_train)

icu_train = np.array(icu_train)
icu_val = np.array(icu_val)
icu_test = np.array(icu_test)
Esempio n. 5
0
def plot_heatmap_and_patient():
    icu_names = ["", "Coronary", "Cardiac", "Medical", "Surgical"]
    for icu in [1, 2, 3, 4]:
        # for icu in [1]:
        # for view_all in [True, False]:
        for view_all in [True]:
            if view_all:
                x_orig, y_orig, _ = data.load_icus("60", [icu],
                                                   data.targets[0])
            else:
                folds = conv_lstm.load_data("60", [icu], data.targets[0])
                x_icu_train, y_icu_train, x_orig, y_orig = folds[4]

            max_1 = np.count_nonzero(np.asarray(y_orig) == 1)
            max_0 = np.count_nonzero(np.asarray(y_orig) == 0)
            for di in [0]:
                # dead_patient_x = np.asarray(x_orig)[np.asarray(y_orig) == 1][np.random.randint(max_1)]
                dead_patient_x = np.asarray(x_orig)[np.asarray(y_orig) ==
                                                    1][di]
                # surv_patient_x = np.asarray(x_orig)[np.asarray(y_orig) == 0][np.random.randint(max_0)]
                surv_patient_x = np.asarray(x_orig)[np.asarray(y_orig) ==
                                                    0][di]

                x_pad = sequence.pad_sequences(x_orig)
                y_pad = np.asarray(y_orig)

                dead_patient_x = np.floor(np.asarray(dead_patient_x))
                surv_patient_x = np.floor(np.asarray(surv_patient_x))

                model = models.load_model("models/ft-mvis-60-" + str(icu) +
                                          ".h5",
                                          custom_objects={
                                              "precision": precision,
                                              "recall": recall,
                                              "fmeasure": fmeasure
                                          })
                # print(mds.evaluate_model("ft-mvis-60-" + str(icu), x_pad, y_pad))

                gen_model = Model(input=model.input,
                                  output=model.layers[3].output)
                neural_x = gen_model.predict(x_pad)
                x_score = model.predict_proba(x_pad)

                dead_patient_input = np.zeros(
                    (dead_patient_x.shape[0], x_pad.shape[1], x_pad.shape[2]))
                for i in range(dead_patient_x.shape[0]):
                    dead_patient_input[i, :i + 1, :] = dead_patient_x[:i +
                                                                      1, :]
                dead_patient_x_neural = gen_model.predict(dead_patient_input)

                surv_patient_input = np.zeros(
                    (surv_patient_x.shape[0], x_pad.shape[1], x_pad.shape[2]))
                for i in range(surv_patient_x.shape[0]):
                    surv_patient_input[i, :i + 1, :] = surv_patient_x[:i +
                                                                      1, :]
                surv_patient_x_neural = gen_model.predict(surv_patient_input)

                y_pad[y_pad == 0] = -1
                y_orig[y_orig == 0] = -1
                name = "_all" if view_all else "_test_only"
                visual.heatmap_withpatient(neural_x,
                                           y_pad,
                                           icu_names[icu] +
                                           " ICU - Neural Death Heatmap",
                                           "in-hospital-death",
                                           scores=x_score)
# -*- coding: utf-8 -*-
import numpy as np
import prepare_data as data
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.preprocessing import normalize
from keras.preprocessing import sequence

#%%

x, y, ids = data.load_icus("60", [1, 2, 3, 4], data.targets[0])

#%%
x = sequence.pad_sequences(x, padding='post')
y = np.asarray(y)
ids = np.asarray(ids)

#%%

x = x[:, :47, :42]

#%%
x_norm = np.zeros(x.shape)
for ts in range(x.shape[2]):
    x_norm[:, :, ts] = normalize(x[:, :, ts])
x = x_norm

#%%

#fig = plt.figure()
Esempio n. 7
0
def load_data(data_path, data_id, icus, n_patients):
    x, y, icu_ids = data.load_icus(data_path,
                                   data_id,
                                   icus,
                                   should_normalize=True)

    y = np.asarray(y)
    icu_ids = np.asarray(icu_ids)

    folds = []
    x_train = [[] for i in range(k_fold)]
    y_train = [[] for i in range(k_fold)]
    x_val = [[] for i in range(k_fold)]
    y_val = [[] for i in range(k_fold)]
    x_test = [[] for i in range(k_fold)]
    y_test = [[] for i in range(k_fold)]
    icu_ids_train = [[] for i in range(k_fold)]
    icu_ids_val = [[] for i in range(k_fold)]
    icu_ids_test = [[] for i in range(k_fold)]

    skf = StratifiedKFold(n_splits=k_fold, shuffle=True, random_state=33)
    for icu in np.unique(icu_ids):
        x_icu = x[icu_ids == icu]
        y_icu = y[icu_ids == icu]
        icu_ids_icu = icu_ids[icu_ids == icu]

        if n_patients < x_icu.shape[0]:
            x_icu, y_icu = data.subsampling(x_icu, y_icu, n_patients)

        for i, (train_idx, test_idx) in enumerate(skf.split(x_icu, y_icu)):
            x_icu_train, x_icu_val, y_icu_train, y_icu_val, icu_train, icu_val = train_test_split(
                x_icu[train_idx],
                y_icu[train_idx],
                icu_ids_icu[train_idx],
                test_size=0.2,
                random_state=42)

            x_train[i] += x_icu_train.tolist()
            y_train[i] += y_icu_train.tolist()
            x_val[i] += x_icu_val.tolist()
            y_val[i] += y_icu_val.tolist()
            x_test[i] += x_icu[test_idx].tolist()
            y_test[i] += y_icu[test_idx].tolist()
            icu_ids_train[i] += icu_train.tolist()
            icu_ids_val[i] += icu_val.tolist()
            icu_ids_test[i] += icu_ids_icu[test_idx].tolist()

    for i in range(k_fold):
        x_train[i], y_train[i], icu_ids_train[i] = data.oversample(
            np.asarray(x_train[i]), np.asarray(y_train[i]),
            np.asarray(icu_ids_train[i]))
        x_val[i] = np.asarray(x_val[i])
        y_val[i] = np.asarray(y_val[i])
        x_test[i] = np.asarray(x_test[i])
        y_test[i] = np.asarray(y_test[i])
        icu_ids_val[i] = np.asarray(icu_ids_val[i])
        icu_ids_test[i] = np.asarray(icu_ids_test[i])

        folds.append(
            (x_train[i], y_train[i], x_val[i], y_val[i], x_test[i], y_test[i],
             icu_ids_train[i], icu_ids_val[i], icu_ids_test[i]))

    return folds
def load_data(data_id, icus, n_patients, feature_sequence):
    x, y, icu_ids = data.load_icus(data_id, icus, data.targets[0])

    if data_id == 'X':
        x = sequence.pad_sequences(x,
                                   padding='pre',
                                   dtype='float64',
                                   maxlen=200)
    else:
        x = sequence.pad_sequences(x, padding='pre', dtype='float64')

    print(x.shape)
    x = x[:, :, np.array(feature_sequence)]

    x_norm = np.zeros(x.shape)
    for ts in range(x.shape[1]):
        x_norm[:, ts, :] = normalize(x[:, ts, :])
    x = x_norm

    y = np.asarray(y)
    icu_ids = np.asarray(icu_ids)

    folds = []
    x_train = [[] for i in range(k_fold)]
    y_train = [[] for i in range(k_fold)]
    x_val = [[] for i in range(k_fold)]
    y_val = [[] for i in range(k_fold)]
    x_test = [[] for i in range(k_fold)]
    y_test = [[] for i in range(k_fold)]
    icu_ids_train = [[] for i in range(k_fold)]
    icu_ids_val = [[] for i in range(k_fold)]
    icu_ids_test = [[] for i in range(k_fold)]

    skf = StratifiedKFold(n_splits=k_fold, shuffle=True, random_state=33)
    for icu in np.unique(icu_ids):
        x_icu = x[icu_ids == icu]
        y_icu = y[icu_ids == icu]
        icu_ids_icu = icu_ids[icu_ids == icu]

        if n_patients < x_icu.shape[0]:
            x_icu, y_icu = subsampling(x_icu, y_icu, n_patients)

        for i, (train_idx, test_idx) in enumerate(skf.split(x_icu, y_icu)):
            # O erro ta aqui, eh por causa do conjunto de validacao
            x_icu_train, x_icu_val, y_icu_train, y_icu_val, icu_train, icu_val = train_test_split(
                x_icu[train_idx],
                y_icu[train_idx],
                icu_ids_icu[train_idx],
                test_size=0.2,
                random_state=42)
            x_train[i] += x_icu_train.tolist()
            y_train[i] += y_icu_train.tolist()
            x_val[i] += x_icu_val.tolist()
            y_val[i] += y_icu_val.tolist()
            x_test[i] += x_icu[test_idx].tolist()
            y_test[i] += y_icu[test_idx].tolist()
            icu_ids_train[i] += icu_train.tolist()
            icu_ids_val[i] += icu_val.tolist()
            icu_ids_test[i] += icu_ids_icu[test_idx].tolist()

    for i in range(k_fold):
        x_train[i], y_train[i], icu_ids_train[i] = oversample(
            np.asarray(x_train[i]), np.asarray(y_train[i]),
            np.asarray(icu_ids_train[i]))
        x_val[i] = np.asarray(x_val[i])
        y_val[i] = np.asarray(y_val[i])
        x_test[i] = np.asarray(x_test[i])
        y_test[i] = np.asarray(y_test[i])
        icu_ids_val[i] = np.asarray(icu_ids_val[i])
        icu_ids_test[i] = np.asarray(icu_ids_test[i])

        print("%d - Train - y_true: %d, y_false: %d" %
              (i, np.count_nonzero(y_train[i] == 0),
               np.count_nonzero(y_train[i] == 1)))
        print("%d - Test - y_true: %d, y_false: %d" %
              (i, np.count_nonzero(y_test[i] == 0),
               np.count_nonzero(y_test[i] == 1)))

        folds.append(
            (x_train[i], y_train[i], x_val[i], y_val[i], x_test[i], y_test[i],
             icu_ids_train[i], icu_ids_val[i], icu_ids_test[i]))

    return folds