Esempio n. 1
0
 def proses(test_str):
     kata_pengganti = ""
     katadasar = tampil.Tampil_KataDasar()
     #katadasar = json.JSONDecoder().decode(katadasar)
     katadasar = [i[0] for i in katadasar]
     query = preprocessing.PreProcess(test_str)
     query = query.split()
     hasil = []
     for i in range(len(query)):
         if query[i] in katadasar:
             hasil.append(query[i])
         else:
             word = bigram.urut(query[i])
             nilai = 0
             for j in range(len(katadasar)):
                 kata_urut = bigram.urut(katadasar[j])
                 nilai_tertinggi = jaccard.compute_jaccard_similarity_score(
                     word, kata_urut)
                 if nilai_tertinggi > nilai:
                     print(kata_urut)
                     print(nilai_tertinggi)
                     nilai = nilai_tertinggi
                     kata_pengganti = katadasar[j]
             hasil.append(kata_pengganti)
     #print(katadasar[2])
     #hasil.append(bigram.urut(query[i]))
     spasi = " "
     hasil = spasi.join(hasil)
     return hasil
Esempio n. 2
0
def createDictionary():
   wordsAdded = {}
   cwd = os.getcwd()
   data = tampil.Tampil_Hadis()
   folder = "Hadits Bukhari-Muslim/"
   fileList = []
   for i in range(len(data)):
      fileList.append(data[i][2])

   for file in fileList:
      
      with open(folder+file, 'r') as f:

         words = f.read()
         words = preprocessing.PreProcess(words)
         words = urut(words)
         words = urut2(words)
         for word in words:
            if word not in wordsAdded.keys():
               wordsAdded[word] = [f.name]
            else:
                if file not in wordsAdded[word]:
                  wordsAdded[word] += [f.name]
                  
   #return wordsAdded
   with open('indexing.txt', 'w') as json_file:
       json.dump(wordsAdded, json_file)
Esempio n. 3
0
def preprocess(filename):
    unknown_word = "UNK".lower()
    sent_start = "SENTSTART".lower()
    sent_end = "SENTEND".lower()
    pad_word = "PADWORD".lower()
    special_tokens = [sent_start, sent_end, pad_word, unknown_word]

    pp = PreProcessing()
    inp_src = data_src + filename
    inp_data = open(inp_src, "r").readlines()

    # load vocab
    inputs = pp.preprocess(inp_data)
    word_to_idx = pp.word_to_idx
    idx_to_word = pp.idx_to_word
    word_to_idx_ctr = pp.word_to_idx_ctr
    word_counters = pp.word_counters

    texts = inputs
    for t in texts:
        for token in t:
            if token not in word_to_idx:
                word_to_idx[token] = word_to_idx_ctr
                idx_to_word[word_to_idx_ctr] = token
                word_to_idx_ctr += 1
                word_counters[token] = 0
            word_counters[token] += 1

    # generate sequences
    sequences = []
    for t in texts:
        tmp = [word_to_idx[sent_start]]
        for token in t:
            if token not in word_to_idx:
                tmp.append(word_to_idx[unknown_word])
            else:
                tmp.append(word_to_idx[token])
        tmp.append(word_to_idx[sent_end])
        sequences.append(tmp)
    sequences = pad_sequences(sequences,
                              maxlen=config.max_input_seq_length,
                              padding='pre',
                              truncating='post')

    # get encoder and decoder input
    encoder_inputs = np.array(sequences)
    decoder_outputs = np.array(sequences)

    pp.word_to_idx = word_to_idx
    pp.idx_to_word = idx_to_word
    pp.vocab_size = len(word_to_idx)
    pp.word_to_idx_ctr = word_to_idx_ctr
    pp.word_counters = word_counters

    return pp, encoder_inputs, decoder_outputs
Esempio n. 4
0
def main():

    # params
    params = {}
    params['embeddings_dim'] =  config.embeddings_dim
    params['lstm_cell_size'] = config.lstm_cell_size
    params['max_input_seq_length'] = config.max_input_seq_length
    params['max_output_seq_length'] = config.max_output_seq_length-1 #inputs are all but last element, outputs are al but first element
    params['batch_size'] = config.batch_size
    params['pretrained_embeddings'] = config.use_pretrained_embeddings
    params['share_encoder_decoder_embeddings'] = config.share_encoder_decoder_embeddings
    params['use_pointer'] = config.use_pointer
    params['pretrained_embeddings_path'] = config.pretrained_embeddings_path
    params['pretrained_embeddings_are_trainable'] = config.pretrained_embeddings_are_trainable
    params['use_additional_info_from_pretrained_embeddings'] = config.use_additional_info_from_pretrained_embeddings
    params['max_vocab_size'] = config.max_vocab_size
    params['do_vocab_pruning'] = config.do_vocab_pruning
    params['use_reverse_encoder'] = config.use_reverse_encoder
    params['use_sentinel_loss'] =config.use_sentinel_loss
    params['lambd'] = config.lambd
    params['use_context_for_out'] = config.use_context_for_out

    print("PARAMS:")
    for key,value in params.items():
        print(" -- ",key," = ",value)
    buckets = {  0:{'max_input_seq_length':params['max_input_seq_length'], 'max_output_seq_length':params['max_output_seq_length']} }
    #print "buckets = ",buckets

    # train
    mode=sys.argv[1]
    print("mode = ",mode)

    ########### PREPROCESSING
    if mode=="preprocessing":
        # preprocessing
        print("------------------------------------------------------------------------")
        preprocessing = PreProcessing()
        splits =["train","valid","test"]
        #for split in splits: preprocessing.loadVocab(split)
        preprocessing.loadVocab('train')
        if params['do_vocab_pruning']:
            preprocessing.pruneVocab(max_vocab_size=params['max_vocab_size'])
        data_seq = {split:preprocessing.loadData(split=split) for split in splits}
        data = { split:preprocessing.prepareMTData(cur_data) for split,cur_data in data_seq.items()  }
        for split,split_data in data.items():
            #print "Split: ",split
            inp,dinp,dout,dout_inp_matches = split_data
            #print inp.shape, dinp.shape, dout.shape, dout_inp_matches.shape
        #print "------------------------------------------------------------------------"
        #print ""
        pickle.dump(data,open(data_src + "data.obj",mode="wb"))
        pickle.dump(preprocessing, open(data_src + "preprocessing.obj",mode="wb") )
        return
    else:
        data = pickle.load(open(data_src + "data.obj","rb") )
        preprocessing = pickle.load(open(data_src + "preprocessing.obj","rb") )

    params['vocab_size'] = preprocessing.vocab_size
    params['preprocessing'] = preprocessing
    train = data['train']
    val = data['valid']
    test = data['test']

    # DEBUG
    if mode=="debug":
        lim = 64
    else:
        lim= int(params['batch_size'] * ( len(train[0])/params['batch_size']))
    if lim!=-1:
        train_encoder_inputs, train_decoder_inputs, train_decoder_outputs, train_decoder_outputs_matching_inputs = train
        train_encoder_inputs = train_encoder_inputs[:lim]
        train_decoder_inputs = train_decoder_inputs[:lim]
        train_decoder_outputs = train_decoder_outputs[:lim]
        train_decoder_outputs_matching_inputs = train_decoder_outputs_matching_inputs[:lim]
        train = train_encoder_inputs, train_decoder_inputs, train_decoder_outputs, train_decoder_outputs_matching_inputs

    #Pretrained embeddibngs
    if params['pretrained_embeddings']:
        pretrained_embeddings = pickle.load(open(params['pretrained_embeddings_path'],mode="rb"),encoding='bytes')
        word_to_idx = preprocessing.word_to_idx
        encoder_embedding_matrix = np.random.rand( params['vocab_size'], params['embeddings_dim'] )
        decoder_embedding_matrix = np.random.rand( params['vocab_size'], params['embeddings_dim'] )
        not_found_count = 0
        for token,idx in word_to_idx.items():
            if token in pretrained_embeddings:
                encoder_embedding_matrix[idx]=pretrained_embeddings[token]
                decoder_embedding_matrix[idx]=pretrained_embeddings[token]
            else:
                if not_found_count<10:
                    print("No pretrained embedding for (only first 10 such cases will be printed. other prints are suppressed) ",token)
                not_found_count+=1
        #print "not found count = ", not_found_count
        params['encoder_embeddings_matrix'] = encoder_embedding_matrix
        params['decoder_embeddings_matrix'] = decoder_embedding_matrix

        if params['use_additional_info_from_pretrained_embeddings']:
            additional_count=0
            tmp=[]
            for token in pretrained_embeddings:
                if token not in preprocessing.word_to_idx:
                    preprocessing.word_to_idx[token] = preprocessing.word_to_idx_ctr
                    preprocessing.idx_to_word[preprocessing.word_to_idx_ctr] = token
                    preprocessing.word_to_idx_ctr+=1
                    tmp.append(pretrained_embeddings[token])
                    additional_count+=1
            #print "additional_count = ",additional_count
            params['vocab_size'] = preprocessing.word_to_idx_ctr
            tmp = np.array(tmp)
            encoder_embedding_matrix = np.vstack([encoder_embedding_matrix,tmp])
            decoder_embedding_matrix = np.vstack([decoder_embedding_matrix,tmp])
            #print "decoder_embedding_matrix.shape ",decoder_embedding_matrix.shape
            #print "New vocab size = ",params['vocab_size']


    # TRAIN/DEBUG
    if mode=='train' or mode=="debug":
        if mode=="train":
            training_iters = int(sys.argv[2])
            model_name = sys.argv[3]
        else:
            training_iters = 5
            model_name = "test"
        params['training_iters'] = training_iters
        params['model_name'] = model_name
        train_buckets = {}
        for bucket,_ in enumerate(buckets):
            train_buckets[bucket] = train

        rnn_model = solver.Solver(params,buckets)
        _ = rnn_model.getModel(params, mode='train',reuse=False, buckets=buckets)
        rnn_model.trainModel(config=params, train_feed_dict=train_buckets, val_feed_dct=val, reverse_vocab=preprocessing.idx_to_word, do_init=True)

    # INFERENCE
    elif mode=="inference":
        saved_model_path = sys.argv[2]
        print("saved_model_path = ",saved_model_path)
        inference_type = sys.argv[3] # greedy / beam
        print("inference_type = ",inference_type)
        params['saved_model_path'] = saved_model_path
        rnn_model = solver.Solver(params, buckets=None, mode='inference')
        _ = rnn_model.getModel(params, mode='inference', reuse=False, buckets=None)
        print("----Running inference-----")

        #val
        val_encoder_inputs, val_decoder_inputs, val_decoder_outputs, val_decoder_outputs_matching_inputs = val
        #print "val_encoder_inputs = ",val_encoder_inputs
        if len(val_decoder_outputs.shape)==3:
            val_decoder_outputs=np.reshape(val_decoder_outputs, (val_decoder_outputs.shape[0], val_decoder_outputs.shape[1]))
        decoder_outputs_inference, decoder_ground_truth_outputs = rnn_model.solveAll(params, val_encoder_inputs, val_decoder_outputs, preprocessing.idx_to_word, inference_type=inference_type)
        validOutFile_name = saved_model_path+".valid.output"
        original_data_path = data_src + "valid.original.nltktok"
        BLEUOutputFile_path = saved_model_path + ".valid.BLEU"
        utilities.getBlue(validOutFile_name, original_data_path, BLEUOutputFile_path, decoder_outputs_inference, decoder_ground_truth_outputs, preprocessing)
        print("VALIDATION: ",open(BLEUOutputFile_path,"r").read())

        #test
        test_encoder_inputs, test_decoder_inputs, test_decoder_outputs, test_decoder_outputs_matching_inputs = test
        if len(test_decoder_outputs.shape)==3:
            test_decoder_outputs=np.reshape(test_decoder_outputs, (test_decoder_outputs.shape[0], test_decoder_outputs.shape[1]))
        decoder_outputs_inference, decoder_ground_truth_outputs = rnn_model.solveAll(params, test_encoder_inputs, test_decoder_outputs, preprocessing.idx_to_word, inference_type=inference_type)
        validOutFile_name = saved_model_path+".test.output"
        original_data_path = data_src + "test.original.nltktok"
        BLEUOutputFile_path = saved_model_path + ".test.BLEU"
        utilities.getBlue(validOutFile_name, original_data_path, BLEUOutputFile_path, decoder_outputs_inference, decoder_ground_truth_outputs, preprocessing)
        print("TEST: ",open(BLEUOutputFile_path,"r").read())

    else:
        print("Please see usage")
Esempio n. 5
0
def proses_Pencarian(value):
        waktu_awal = time.time()
        waktu_prepro_a = time.time()
        query = preprocessing.PreProcess(value) #Preprocessing query
        waktu_prepro_b = time.time()
        waktu_proses_pre = waktu_prepro_b - waktu_prepro_a
        print("Waktu Proses PrePro query "+str(waktu_proses_pre))

        waktu_bigram_a = time.time()
        value = bigram.proses(query) #Bigram query
        waktu_bigram_b = time.time()
        waktu_proses_bigram = waktu_bigram_b - waktu_bigram_a
        print("Waktu Proses bigram query "+str(waktu_proses_bigram))
        
        typo = ''
        if value != query:
           typo = value

        value = value.split() #Bagi perkata hasil typo/query
        f = open('indexing.json',) 
        indexing = json.load(f)

        #Mengecek query di indexing
        hasil = []
        for i in range(len(value)):
            if value[i] in indexing:
                hasil = hasil + indexing[value[i]]
        f.close()

        doc = []
        for x in range(len(hasil)):
            if hasil[x] not in doc:
                doc.append(hasil[x])

        #Ambil Data dari Database sesuai dengan dokumen yang cocok dengan query
        data = []
        dokumen = tampil.Tampil_Hadis()
        for k in range(len(doc)):
            for l in range(len(dokumen)):
                init = "Hadits Bukhari-Muslim/"+dokumen[l][2]
                #print(init)
                if doc[k] == init:
                    data.append(dokumen[l])

        #Menghitung nilai jaccard similarity tiap dokumen terhadap query
        waktu_jaccard_a = time.time()
        rank = []
        folder = "Hadits Bukhari-Muslim/"
        for j in range(len(data)):
            alamat = folder+data[j][2]
            words = jaccard.urut(data[j][3])
            nilai = jaccard.compute_jaccard_similarity_score(value, words)
            result = [alamat, nilai]
            rank.append(result)
        waktu_jaccard_b = time.time()
        waktu_proses_jaccard = waktu_jaccard_b - waktu_jaccard_a
        print("Waktu Proses jaccard "+str(waktu_proses_jaccard))

        #sorting dokumen        
        rank = sorted(rank, key=lambda x: x[1], reverse=True)
        waktu_akhir = time.time()
        waktu_proses1 = waktu_akhir - waktu_awal

        return typo, rank, waktu_proses1