import tensorflow as tf import os import preprocess from time import gmtime, strftime from sys import argv datetime = strftime("%Y-%m-%d %H:%M:%S", gmtime()) curr_dir = os.getcwd() seqdir = curr_dir + "/seqs/" seqfiles = os.listdir(seqdir) props_file = "aa_propierties.csv" add_props = True seq_len = int(argv[1]) dataset = preprocess.DataSet(seqdir, props_file, add_props, seq_len) test_dict = dataset.test_dict input_tensor = dataset.train_tensor # Import train set test_set = dataset.test_tensor labels = dataset.labels trainset_size = len(input_tensor) n_labels = len(labels) aa_vec_len = len(dataset.aa_dict.values()[0]) n_epochs = 400 minibatch_size = 500 learn_step = 0.2 iters_x_epoch = int(round(trainset_size / minibatch_size, 0)) drop_prob = 1 print_progress = True
import preprocess from neural_networks import * from time import gmtime, strftime from sys import argv import pandas as pd datetime = strftime("%Y-%m-%d %H:%M:%S", gmtime()) curr_dir = os.getcwd() save_model = True seqdir = curr_dir + "/seqs/" seqfiles = os.listdir(seqdir) props_file = "aa_propierties.csv" add_props = True seq_len = int(argv[3]) dataset = preprocess.DataSet(seqdir, props_file, add_props, seq_len, flatten=True) test_dict = dataset.test_dict input_tensor = dataset.train_tensor # Import train set test_set = dataset.test_tensor labels = dataset.labels add_conv = True if len(argv) == 5 else False n_labels = len(labels) aa_vec_len = len(dataset.aa_dict.values()[0]) n_epochs = 1000 minibatch_size = 500 learn_step = 0.02 iters_x_epoch = int(round(len(input_tensor)/minibatch_size, 0)) drop_prob = float(argv[1]) n_units_fc = int(argv[2]) n_units_lstm = 60