Esempio n. 1
0
    yhat = model3.transform(tmpX[n_train:], tmpY[n_train:])
    model3.zscore(yhat, tmpY[n_train:])

    print(f"{c*10} End Model3 <-- new, hyperparams {c*10}\n")
    # ## TODO: classifier/regressor/clusterer/etc Mixin requirements
    # piper = Pipeline(['model', model2])
    # print( piper )

    # piper.fit_transform(tmpX, tmpY)


    print(f"\n{c*10} Starting TrainingManager with Grid Search {c*10}\n")
    import preprocess, extract 
    from sklearn.preprocessing import StandardScaler, PowerTransformer
    from sklearn.linear_model import LogisticRegression
    from sklearn import svm 

    dpipez = [Pipeline([('scaler', StandardScaler()), ]),  
                Pipeline([('power', PowerTransformer()),])
                ]
    mpipez = [ ( Pipeline([ ('flatten', preprocess.Flattenor()), ('svm', svm.SVC() ) ]), {'kernel':('linear', 'rbf'), 'C':[1, 10]}) ,  ## 
                ( Pipeline([ ('flatten', preprocess.Flattenor()),('logit', LogisticRegression() ) ]), {'C':[1,10]} ), ##
                (Pipeline([('reshaper', preprocess.Reshapeor( (1, -1)) ), ('tensorfy', preprocess.ToTensor() ),('zmodel', model2)]), {}) 
             ] #*tmpX[0].shape

    print( mpipez)

    mgr = ZTrainingManager() 
    mgr.build_permutationz(data_pipez=dpipez, model_pipez=mpipez)
    mgr.run( [x.cpu().numpy().ravel() for x in tmpX], [y.cpu().numpy().ravel() for y in tmpY] , train_test_split=1.)
    print(f"{c*10} End ZTrainingManager {c*10}\n")
Esempio n. 2
0
    print(f"\n{c*10} Starting TrainingManager with Grid Search {c*10}\n")
    import preprocess, extract
    from sklearn.preprocessing import StandardScaler, PowerTransformer
    from sklearn.linear_model import LogisticRegression
    from sklearn import svm

    dpipez = [
        Pipeline([
            ('scaler', StandardScaler()),
        ]),
        Pipeline([
            ('power', PowerTransformer()),
        ])
    ]
    mpipez = [
        (Pipeline([('flatten', preprocess.Flattenor()), ('svm', svm.SVC())]), {
            'kernel': ('linear', 'rbf'),
            'C': [1, 10]
        }),  ## 
        (Pipeline([('flatten', preprocess.Flattenor()),
                   ('logit', LogisticRegression())]), {
                       'C': [1, 10]
                   }),  ##
        (Pipeline([('reshaper', preprocess.Reshapeor((1, -1))),
                   ('tensorfy', preprocess.ToTensor()),
                   ('zmodel', model2)]), {})
    ]  #*tmpX[0].shape

    print(mpipez)

    mgr = ZTrainingManager()
Esempio n. 3
0
        ftype=zdata.PdDataStats.TYPE_TXT_LINES_FILE)

    dframe = pdstats.dframe.sample(n=130)
    X_data = dframe
    y_data = dframe['Normal'].values.astype(np.float32)  ##TODO: 'dcodez_short'
    print("Loaded into PdFrame data of size: ", len(dframe),
          " and into y_data of size ", len(y_data))
    print(dframe.columns)

    ### Setup y_label : n-ary classification

    ## 2. PIPELINEZ
    loader_p = [
        ('fetch_img',
         preprocess.LoadImageFileTransform('fpath', crop_ratio=0.75)),
    ]
    reshapeor_1 = [
        ('flatten', preprocess.Flattenor()),
    ]
    funduzor_1 = [
        ('funduzor', extract.FundusColorChannelz()),
    ]
    scaler_p = [
        ('scaler', StandardScaler()),
    ]

    tmpz = Pipeline(loader_p + funduzor_1).transform(X_data)
    print(len(tmpz), tmpz[0].shape)
    # _ = [print(f"{t.shape}") for t in tmpz]
    utilz.Image.plot_images_list([t[:, :, 1:] for t in tmpz], nc=5, cmap=None)