Esempio n. 1
0
def train(output_units=OUTPUT_UNITS, num_units=NUM_UNITS, loss=LOSS, learning_rate=LEARNING_RATE):
    # Generate the training sequences
    inputs, targets = generate_training_sequences(SEQUENCE_LENGTH)

    # Build the network
    model = build_model(output_units, num_units, loss, learning_rate)

    # Train the model
    model.fit(inputs, targets, epochs=EPOCHS, batch_size=BATCH_SIZE)

    # Save the model
    model.save(SAVE_MODEL_PATH)
Esempio n. 2
0
def train(output_units=OUTPUT_UNITS, num_units=NUM_UNITS, loss=LOSS, learning_rate=LEARNING_RATE):
    """Train and save TF model.

    :param output_units (int): Num output units
    :param num_units (list of int): Num of units in hidden layers
    :param loss (str): Type of loss function to use
    :param learning_rate (float): Learning rate to apply
    """

    # generate the training sequences
    inputs, targets = generate_training_sequences(SEQUENCE_LENGTH)

    # build the network
    model = build_model(output_units, num_units, loss, learning_rate)

    # train the model
    model.fit(inputs, targets, epochs=EPOCHS, batch_size=BATCH_SIZE)

    # save the model
    model.save(SAVE_MODEL_PATH)
def train(output_units=OUTPUT_UNITS,
          num_units=NUM_UNITS,
          loss=LOSS,
          learning_rate=LEARNING_RATE):
    """Entrenar y guardar modelo TF.

    :param output_units (int): Número de unidades de salida
    :param num_units (list of int): Número de unidades en capas ocultas
    :param loss (str): Tipo de función de pérdida a utilizar
    :param learning_rate (float): Tasa de aprendizaje para aplicar
    """

    # generar las secuencias de entrenamiento
    inputs, targets = generate_training_sequences(SEQUENCE_LENGTH)

    # construir la red
    model = build_model(output_units, num_units, loss, learning_rate)

    # entrenar al modelo
    model.fit(inputs, targets, epochs=EPOCHS, batch_size=BATCH_SIZE)

    # guardar el modelo
    model.save(SAVE_MODEL_PATH)