Esempio n. 1
0
 def set_transformers(self):
     self.transforms = {
         self.augmentation_name[0]:
         transforms.Compose([ToTensor()]),
         self.augmentation_name[1]:
         transforms.Compose([
             # Choose from tranforms_list randomly
             transforms.RandomChoice(self.randomchoice['choice1']),
             ToTensor()
         ]),
         self.augmentation_name[2]:
         transforms.Compose([
             transforms.RandomChoice(self.randomchoice['choice2']),
             ToTensor()
         ]),
         self.augmentation_name[3]:
         transforms.Compose([
             transforms.RandomChoice(self.randomchoice['choice3']),
             ToTensor()
         ]),
         self.augmentation_name[4]:
         transforms.Compose([
             transforms.RandomChoice(self.randomchoice['choice4']),
             ToTensor()
         ])
     }
Esempio n. 2
0
    def preprocess(self, phase):
        if phase == 'train':
            preprocess = transforms.Compose([
                FixedResize(self.output_size),
                Translate(50, 255),
                # RandomScale(),
                CutOut(64),
                RandomHorizontalFlip(),
                AdjustColor(self.factor),
                RandomGaussianBlur(self.radius),
                Normalize(mean=(0.485, 0.456, 0.406),
                          std=(0.229, 0.224, 0.225)),
                ToTensor(),
            ])

        elif phase == 'val':
            preprocess = transforms.Compose([
                FixedResize(self.output_size),
                Normalize(mean=(0.485, 0.456, 0.406),
                          std=(0.229, 0.224, 0.225)),
                ToTensor(),
            ])

        elif phase == 'test':
            preprocess = transforms.Compose([
                FixedResize(self.output_size, is_resize=False),
                Normalize(mean=(0.485, 0.456, 0.406),
                          std=(0.229, 0.224, 0.225)),
                ToTensor(),
            ])

        else:
            raise NotImplementedError

        return preprocess
Esempio n. 3
0
 def load_dataset(self):
     self.dataset = self.dataset_class(txt_file='testing.txt',
                                       root_dir=self.root_dir,
                                       transform=transforms.Compose([
                                           Resize((64, 64)),
                                           ToTensor()
                                       ])
                                       )
     self.dataloader = DataLoader(self.dataset, batch_size=self.batch_size,
                                  shuffle=self.is_shuffle, num_workers=self.num_workers)
Esempio n. 4
0
    def __init__(self, clean_file_path, noisy_file_path, frame_size,
                 frame_shift):
        self.clean_test_name = os.listdir(clean_file_path)
        self.noisy_test_name = os.listdir(noisy_file_path)
        self.noisy_file_path = noisy_file_path
        self.clean_file_path = clean_file_path

        self.get_frames = SignalToFrames(frame_size=frame_size,
                                         frame_shift=frame_shift)
        self.to_tensor = ToTensor()
Esempio n. 5
0
 def set_transformers(self):
     self.transforms = {
         self.augmentation_name[0]:
         transforms.Compose(
             [ToPILImage(),
              ToTensor(),
              Resize(self.resize),
              OrigPad()]),
         self.augmentation_name[1]:
         transforms.Compose([
             ToPILImage(),
             # Choose from tranforms_list randomly
             transforms.RandomChoice(self.randomchoice['choice1']),
             ToTensor(),
             Resize(self.resize),
             OrigPad()
         ]),
         self.augmentation_name[2]:
         transforms.Compose([
             ToPILImage(),
             transforms.RandomChoice(self.randomchoice['choice2']),
             ToTensor(),
             Resize(self.resize),
             OrigPad()
         ]),
         self.augmentation_name[3]:
         transforms.Compose([
             ToPILImage(),
             transforms.RandomChoice(self.randomchoice['choice3']),
             ToTensor(),
             Resize(self.resize),
             OrigPad()
         ]),
         self.augmentation_name[4]:
         transforms.Compose([
             ToPILImage(),
             transforms.RandomChoice(self.randomchoice['choice4']),
             ToTensor(),
             Resize(self.resize),
             OrigPad()
         ])
     }
Esempio n. 6
0
    def __init__(self, file_path, frame_size=512, frame_shift=256):

        #self.filename = filename
        with open(file_path, 'r') as validation_file_list:
            self.file_list = [
                line.strip() for line in validation_file_list.readlines()
            ]

        self.get_frames = SignalToFrames(frame_size=frame_size,
                                         frame_shift=frame_shift)
        self.to_tensor = ToTensor()
Esempio n. 7
0
    def __init__(self, video_path, txt_path, max_frame_len=14, trainflag=True):
        '''
        video_path:视频路径
        txt_path:文本路径
        trainflag:数据集类型:决定样本上的可用的可选变换
        '''
        self.video_path = video_path
        self.txt_path = txt_path
        self.max_frame_len = max_frame_len
        self.trainflag = trainflag
        self.common_transform = transforms.Compose([
            Rescale(114),
            CenterCrop((112, 224)),
            ToTensor(),
            ColorNormalize()
        ])

        self.data = self._load_data(self.txt_path)
Esempio n. 8
0
    def __init__(self,
                 file_path,
                 frame_size=512,
                 frame_shift=256,
                 nsamples=64000):
        # file_path is the path of training dataset
        # option1: '/data/KaiWang/pytorch_learn/pytorch_for_speech/dataset/timit_mix/trainset/two_data'
        # option2 : .txt file format  file_path='/data/KaiWang/pytorch_learn/pytorch_for_speech/DDAEC/train_file_list'

        #self.file_list = glob.glob(os.path.join(file_path, '*'))

        with open(file_path, 'r') as train_file_list:
            self.file_list = [
                line.strip() for line in train_file_list.readlines()
            ]

        self.nsamples = nsamples
        self.get_frames = SignalToFrames(frame_size=frame_size,
                                         frame_shift=frame_shift)
        self.to_tensor = ToTensor()
Esempio n. 9
0
                    help='path to save output')

args = parser.parse_args()
print(args)

device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu")
model = Hybird(args).to(device)

path = "/home/yinzi/data4/fcn_res/exp_stage2/checkpoints7fc8d2bc/best.pth.tar"
state = torch.load(path, map_location=device)
model.load_state_dict(state['model'])
print(path + " loaded")

root_dir = {'test': "/home/yinzi/data4/warped/test"}

transforms_list = {'test': transforms.Compose([ToTensor()])}
# DataLoader
Dataset = Warped_HelenDataset(root_dir=root_dir['test'],
                              mode='test',
                              transform=transforms_list['test'])

dataloader = DataLoader(Dataset, batch_size=16, shuffle=True, num_workers=4)

for batch in dataloader:
    image = batch['image'].to(device)
    name = batch['name']
    boxes = batch['boxes']
    warp_box = batch['warp_boxes']
    N = image.shape[0]
    inverse_box = torch.round(warp_box * 256. + 256.).float().numpy()
    assert boxes.shape == (N, 4, 4)
Esempio n. 10
0
# Dataset Read_in Part
root_dir = {
    'train': "/home/yinzi/data4/warped/train",
    'val': "/home/yinzi/data4/warped/val",
    'test': "/home/yinzi/data4/warped/test"
}


class DataLoaderX(DataLoader):
    def __iter__(self):
        return BackgroundGenerator(super().__iter__())


transforms_list = {
    'train': transforms.Compose([PrepareLabels((128, 128)),
                                 ToTensor()]),
    'val': transforms.Compose([PrepareLabels((128, 128)),
                               ToTensor()]),
    'test': transforms.Compose([PrepareLabels((128, 128)),
                                ToTensor()])
}

Dataset = {
    'val':
    Warped_HelenDataset(root_dir=root_dir['val'],
                        mode='val',
                        transform=transforms_list['val'])
}
if args.datamore:
    # Stage 1 augmentation
    stage1_augmentation = Stage2DataAugmentation(dataset=Warped_HelenDataset,
Esempio n. 11
0
	device = torch.device("cuda")
else:
	device = torch.device("cpu")


# Load data
def make_dataset(file, dir_name, trans, fg_indexs=None, bg_indexs=set([])):
	return ImageDataset(txt_file=file, root_dir='data/facial_parts/'+dir_name, fg_indexs=fg_indexs, bg_indexs=bg_indexs,
                                           transform=transforms.Compose(trans))                                           	

train_datasets = {}
valid_datasets = {}
test_datasets = {}

## Training set
train_datasets['eyebrow'] = ConcatDataset([make_dataset('exemplars.txt', 'eyebrow1', fg_indexs=set([2]), trans=[DataArg(),ToTensor()]), 
										   make_dataset('exemplars.txt', 'eyebrow2', fg_indexs=set([3]), trans=[Invert(), DataArg(),ToTensor()])])

train_datasets['eye'] = ConcatDataset([make_dataset('exemplars.txt', 'eye1', fg_indexs=set([4]), trans=[DataArg(),ToTensor()]), 
									make_dataset('exemplars.txt', 'eye2', fg_indexs=set([5]), trans=[Invert(), DataArg(), ToTensor()])])

train_datasets['nose'] = make_dataset('exemplars.txt', 'nose', fg_indexs=set([6]), trans=[DataArg(),ToTensor()])
train_datasets['mouth'] = make_dataset('exemplars.txt', 'mouth', fg_indexs=set([7,8,9]), trans=[DataArg(), ToTensor()])


## Validation set
valid_datasets['eyebrow'] = ConcatDataset([make_dataset('tuning.txt', 'eyebrow1', fg_indexs=set([2]), trans=[ToTensor()]), 
										   make_dataset('tuning.txt', 'eyebrow2', fg_indexs=set([3]), trans=[Invert(), ToTensor()])])

valid_datasets['eye'] = ConcatDataset([make_dataset('tuning.txt', 'eye1', fg_indexs=set([4]), trans=[ToTensor()]), 
									make_dataset('tuning.txt', 'eye2', fg_indexs=set([5]), trans=[Invert(), ToTensor()])])
Esempio n. 12
0
if torch.cuda.is_available():
  device = torch.device("cuda")
else:
  device = torch.device("cpu")

resize_num = 64
part_width = 64
part_mouth = 80
## Load test data 
test_dataset = ImageDataset(txt_file='testing.txt',
                                           root_dir='data/SmithCVPR2013_dataset_resized',
                                           bg_indexs=set([0,1,10]),
                                           transform=transforms.Compose([
                                               Rescale((resize_num,resize_num)),
                                               ToTensor(),
                                           ]))
test_loader = DataLoader(test_dataset, batch_size=args.batch_size,
                        shuffle=True, num_workers=4)

unresized_dataset = ImageDataset(txt_file='testing.txt',
                                           root_dir='data/SmithCVPR2013_dataset_resized',
                                           transform=ToTensor(), calc_bg=False)


## Load models
model = pickle.load(open('res/saved-model.pth', 'rb'))
model = model.to(device)

names = ['eyebrow', 'eye', 'nose', 'mouth']
models={}
Esempio n. 13
0
args = parser.parse_args()
print(args)

# Dataset Read_in Part
img_root_dir = "/data1/yinzi/datas"
# root_dir = '/home/yinzi/Downloads/datas'
part_root_dir = "/data1/yinzi/facial_parts"
root_dir = {'image': img_root_dir, 'parts': part_root_dir}
txt_file_names = {'train': "exemplars.txt", 'val': "tuning.txt"}

twostage_Dataset = {
    x: TwoStepData(txt_file=txt_file_names[x],
                   root_dir=root_dir,
                   transform=transforms.Compose(
                       [Resize((64, 64)),
                        ToTensor(), Normalize()]))
    for x in ['train', 'val']
}

two_dataloader = {
    x: DataLoader(twostage_Dataset[x],
                  batch_size=args.batch_size,
                  shuffle=True,
                  num_workers=16)
    for x in ['train', 'val']
}


class TrainModel(TemplateModel):
    def __init__(self):
        super(TrainModel, self).__init__()
Esempio n. 14
0
def main():

    valid_datasets = {}

    ## Validation set
    valid_datasets['eyebrow'] = ConcatDataset([
        make_dataset('tuning.txt',
                     'eyebrow1',
                     fg_indexs=set([2]),
                     trans=[ToTensor()]),
        make_dataset('tuning.txt',
                     'eyebrow2',
                     fg_indexs=set([3]),
                     trans=[ToTensor(), Invert()])
    ])

    valid_datasets['eye'] = ConcatDataset([
        make_dataset('tuning.txt',
                     'eye1',
                     fg_indexs=set([4]),
                     trans=[ToTensor()]),
        make_dataset('tuning.txt',
                     'eye2',
                     fg_indexs=set([5]),
                     trans=[ToTensor(), Invert()])
    ])

    valid_datasets['nose'] = make_dataset('tuning.txt',
                                          'nose',
                                          fg_indexs=set([6]),
                                          trans=[ToTensor()])
    valid_datasets['mouth'] = make_dataset('tuning.txt',
                                           'mouth',
                                           fg_indexs=set([7, 8, 9]),
                                           trans=[ToTensor()])

    names = ['eyebrow', 'eye', 'nose', 'mouth']
    l = {'eyebrow': 2, 'eye': 2, 'nose': 2, 'mouth': 4}

    for name in names:
        print(name, "...")
        model = pickle.load(open('res/saved-model-%s.pth' % name, 'rb'))
        #model model.to(device)

        mod = Modulator(l[name])
        mod = mod.to(device)

        valid_loader = DataLoader(valid_datasets[name],
                                  batch_size=230,
                                  shuffle=True,
                                  num_workers=4)

        batch = [b for b in valid_loader][0]
        image, labels = batch['image'].to(device), batch['labels'].to(device)
        observations = model(image)
        loss_before = mod.loss_fn(observations, labels)
        mod.fit(observations, labels)
        loss_after = mod.loss_fn(mod.forward(observations), labels)
        print("Loss Before", loss_before)
        print("Loss After", loss_after)

        pickle.dump(mod, open('res/saved-modulator-%s.pth' % name, 'wb'))
Esempio n. 15
0
# Dataset and Dataloader
# Dataset Read_in Part
root_dir = "/data1/yinzi/datas"
parts_root_dir = "/home/yinzi/data3/recroped_parts"

txt_file_names = {
    'train': "exemplars.txt",
    'val': "tuning.txt",
    'test': "testing.txt"
}

transforms_list = {
    'train':
        transforms.Compose([
            ToTensor(),
            Resize((128, 128)),
            OrigPad()
        ]),
    'val':
        transforms.Compose([
            ToTensor(),
            Resize((128, 128)),
            OrigPad()
        ]),
    'test':
        transforms.Compose([
            ToTensor(),
            Resize((128, 128)),
            OrigPad()
        ])
Esempio n. 16
0
if torch.cuda.is_available():
    device = torch.device("cuda")
else:
    device = torch.device("cpu")

resize_num = 64
part_width = 64
part_mouth = 80
## Load test data
test_dataset = ImageDataset(txt_file='testing.txt',
                            root_dir='data/SmithCVPR2013_dataset_resized',
                            bg_indexs=set([0, 1, 10]),
                            transform=transforms.Compose([
                                Rescale((resize_num, resize_num)),
                                ToTensor(),
                            ]))
test_loader = DataLoader(test_dataset,
                         batch_size=args.batch_size,
                         shuffle=True,
                         num_workers=4)

unresized_dataset = ImageDataset(txt_file='testing.txt',
                                 root_dir='data/SmithCVPR2013_dataset_resized',
                                 transform=ToTensor(),
                                 calc_bg=False)

## Load models
model = pickle.load(open('res/saved-model.pth', 'rb'))
model = model.to(device)
Esempio n. 17
0
    'train': "/home/yinzi/data4/warped/train",
    'val': "/home/yinzi/data4/warped/val",
    'test': "/home/yinzi/data4/warped/test"
}


class DataLoaderX(DataLoader):
    def __iter__(self):
        return BackgroundGenerator(super().__iter__())


transforms_list = {
    'train':
        transforms.Compose([
            PrepareLabels((128, 128)),
            ToTensor()
        ]),
    'val':
        transforms.Compose([
            PrepareLabels((128, 128)),
            ToTensor()
        ]),
    'test':
        transforms.Compose([
            PrepareLabels((128, 128)),
            ToTensor()
        ])
}

Dataset = {'val': Warped_HelenDataset(root_dir=root_dir['val'],
                                      mode='val',
Esempio n. 18
0
args = parser.parse_args()
print(args)

# Dataset and Dataloader
# Dataset Read_in Part
root_dir = "/data1/yinzi/datas"
parts_root_dir = "/home/yinzi/data3/recroped_parts"

txt_file_names = {
    'train': "exemplars.txt",
    'val': "tuning.txt",
    'test': "testing.txt"
}

transforms_list = {
    'train': transforms.Compose([ToTensor(),
                                 Resize((128, 128)),
                                 OrigPad()]),
    'val': transforms.Compose([ToTensor(),
                               Resize((128, 128)),
                               OrigPad()]),
    'test': transforms.Compose([ToTensor(),
                                Resize((128, 128)),
                                OrigPad()])
}

# DataLoader
Dataset = {
    x: HelenDataset(txt_file=txt_file_names[x],
                    root_dir=root_dir,
                    parts_root_dir=parts_root_dir,
Esempio n. 19
0
args = parser.parse_args()
print(args)

if torch.cuda.is_available():
    device = torch.device("cuda")
else:
    device = torch.device("cpu")

resize_num = 64

# Load data
train_dataset = ImageDataset(txt_file='exemplars.txt',
                             root_dir='data/SmithCVPR2013_dataset_resized_' +
                             str(resize_num),
                             bg_indexs=set([0, 1, 10]),
                             transform=transforms.Compose([ToTensor()]))
train_loader = DataLoader(train_dataset,
                          batch_size=args.batch_size,
                          shuffle=True,
                          num_workers=4)

valid_dataset = ImageDataset(txt_file='tuning.txt',
                             root_dir='data/SmithCVPR2013_dataset_resized_' +
                             str(resize_num),
                             bg_indexs=set([0, 1, 10]),
                             transform=transforms.Compose([ToTensor()]))

valid_loader = DataLoader(valid_dataset,
                          batch_size=args.batch_size,
                          shuffle=True,
                          num_workers=4)