def main(): for kfold in range(10): inputdata, outputdata = Readcsv() trainin, trainout, testin, testout = fold(inputdata, outputdata) data = np.array(inputdata) out = np.array(outputdata) wout, biout, win, biin = train(trainin, trainout) target = test(wout, biout, win, biin, testin) print(checkerror(target, testout))
def dealMessage(self): Msg = self.edit.toPlainText() self.edit.clear() message = messageW(Msg, 'user') item = QListWidgetItem(self.list) message.setFixedWidth(self.width() - 25) item.setSizeHint(message.fontRect()) self.list.setItemWidget(item, message) self.list.scrollToBottom() # ............................. # # print("#$#$#$#$#$#$") returnMsg = "" with open("./data/9939jbks.json", "r", encoding="utf-8") as file_ks: ks = json.load(file_ks) ifok = True str_msg = Msg for ele in ks: if ele["病名"] == str_msg: # print(ele["挂号科室"]) for e in ele["挂号科室"]: returnMsg = returnMsg + e + " " ifok = False break # print(Msg) # returnMsg = "jdksajhk" if ifok: file_tree = "./tree/decision_tree.json" tree_test = preprocessing.Decision_Tree(ifload=True, file_name=file_tree) returnMsg = preprocessing.test(str_msg, tree_test) # ............................. # message = messageW(returnMsg, 'helper') item = QListWidgetItem(self.list) message.setFixedWidth(self.width() - 25) item.setSizeHint(message.fontRect()) self.list.setItemWidget(item, message) self.list.scrollToBottom()
import arff import numpy as np import math import random from preprocessing import preprocessing,getoutputData,test,train dataset = arff.load(open('Autism-Child-Data.arff', 'rb')) data = np.array(dataset['data']) #Input array x = preprocessing(data,21) #Output y = train(x) o = getoutputData(x,73) l = test(x) u = getoutputData(x,219) def entropy() : kuy = math.log2(10) return 0
print('Building Tokenizer...') tokenizer = preprocessing.get_tokenizer(df) score = np.zeros(shape=(0)) label = np.zeros(shape=(0)) target_correct = 0 for i in range(len(projects)): #len(projects) project = projects[i] print('*' * 80) print(project) ss = time.time() models = preprocessing.train(df[df.projectname != project], tokenizer, project) print('###########################', time.time() - ss) #models=preprocessing.load_models(project) ss = time.time() tscore, tlabel, t_target_correct = preprocessing.test( df_classes, df_items[df_items.projectname == project], tokenizer, models) print('###########################', time.time() - ss) score = np.concatenate((score, tscore.reshape(-1)), axis=0) label = np.concatenate((label, tlabel.reshape(-1)), axis=0) target_correct += t_target_correct print('*' * 80) print('Final') preprocessing.eval(score, label, target_correct)
dataset = arff.load(open('Autism-Child-Data.arff', 'rb')) data = np.array(dataset['data']) X = preprocessing(data, 21) def sigmoid(x, deriv=False): if (deriv == True): return x * (1 - x) return 1 / (1 + np.exp(-x)) y = train(X) # y = [[float(n) for n in m] for m in y] o = getoutputData(X, 10) z = test(X) p = getoutputData(z, 282) weight_input = 2 * np.random.random((17, 5)) - 1 weight_hidden = 2 * np.random.random((6, 1)) - 1 print o learning_rate = [[0.01]] print "Start : " # code for i in xrange(1, 1500, 1): for j in xrange(282): input_layer = np.array([y[j]]) hidden_layer_out = sigmoid(np.dot(input_layer, weight_input))