rnd=rnd) validation_data = BatchProcessor( X_dirpath=C['X_valid_dirpath'], y_dirpath=C['y_dirpath'], batchsize=C['batchsize'], border=C['border'], limit=C['limit'], random=False, dtype=theano.config.floatX, rnd=rnd) pretrain_data = BatchProcessor( X_dirpath=C['X_pretrain_dirpath'], y_dirpath=C['y_dirpath'], batchsize=500000, border=C['border'], limit=None, random=True, random_mode='fully', rnd=rnd, dtype=theano.config.floatX) C['training_size'] = training_data.size() C['validation_size'] = validation_data.size() C['pretrain_size'] = pretrain_data.size() print "Training size: %d" % C['training_size'] print "Validation size: %d" % C['validation_size'] print "Pretrain size: %d" % C['pretrain_size'] mr.add_experiment_metainfo(constants=C) mr.start() save_dir = "./models/%s_%d_" % (mr.experiment_name, mr.job_id) pretrain_save_dir = save_dir + "pretrain_" n_in = (2*C['border']+1)**2 net = Network([ AutoencoderLayer(n_in=n_in, n_hidden=C['hidden_1'], rnd=rnd,
def train(job_id, params): print "Job ID: %d" % job_id border = 2 n_hidden_layer = params['hidden'] metric_recorder = MetricRecorder(config_dir_path='./config.json', job_id=job_id) C = { 'X_dirpath' : '../../../data/onetext_train_small/*', 'X_valid_dirpath' : '../../../data/onetext_valid_small/*', 'y_dirpath' : '../../../data/train_cleaned/', 'batchsize' : 2000000, 'limit' : None, 'epochs' : 15, 'patience' : 70000, 'patience_increase' : 2, 'improvement_threshold' : 0.995, 'validation_frequency' : 2, 'lmbda' : 0.0, 'dropout' : 0.0, 'training_size' : None, 'validation_size' : None, 'algorithm' : 'RMSProp', 'eta' : float(params['eta'][0]), 'eta_min': float(params['eta_min'][0]), 'eta_pre' : float(params['eta_pre'][0]), 'corruption_level' : float(params['corruption_level'][0]), 'border' : 2, 'hidden' : int(params['hidden'][0]), 'mini_batch_size': 500 } training_data = BatchProcessor( X_dirpath=C['X_dirpath'], y_dirpath=C['y_dirpath'], batchsize=C['batchsize'], border=C['border'], limit=C['limit'], random=True, random_mode='fully', dtype=theano.config.floatX, rnd=rnd) validation_data = BatchProcessor( X_dirpath=C['X_valid_dirpath'], y_dirpath=C['y_dirpath'], batchsize=C['batchsize'], border=C['border'], limit=C['limit'], random=False, dtype=theano.config.floatX, rnd=rnd) pretrain_data = BatchProcessor( X_dirpath='../../../data/onetext_pretrain_small/*', y_dirpath='../../../data/train_cleaned/', batchsize=50000, border=border, limit=None, random=True, random_mode='fully', rnd=rnd, dtype=theano.config.floatX) C['training_size'] = training_data.size() C['validation_size'] = validation_data.size() print "Training size: %d" % C['training_size'] print "Validation size: %d" % C['validation_size'] metric_recorder.add_experiment_metainfo(constants=C) metric_recorder.start() n_in = (2*border+1)**2 net = Network([ AutoencoderLayer(n_in=n_in, n_hidden=C['hidden'], rnd=rnd, corruption_level=C['corruption_level']), FullyConnectedLayer(n_in=C['hidden'], n_out=1, rnd=rnd)], C['mini_batch_size']) print '...start pretraining' net.pretrain_autoencoders(training_data=pretrain_data, mbs=C['mini_batch_size'], eta=C['eta_pre'], epochs=15, metric_recorder=metric_recorder) result = net.train(tdata=training_data, epochs=C['epochs'], mbs=C['mini_batch_size'], eta=C['eta'], eta_min=C['eta_min'], vdata=validation_data, lmbda=C['lmbda'], momentum=None, patience_increase=C['patience_increase'], improvement_threshold=C['improvement_threshold'], validation_frequency=C['validation_frequency'], metric_recorder=metric_recorder, save_dir='./models/%d_' % metric_recorder.job_id, early_stoping=False) print 'Time = %f' % metric_recorder.stop() print 'Result = %f' % result return float(result)
def train(job_id, mbs): #print "Job ID: %d" % job_id eta = 0.01 # 1-7 0.01 border = 2 n_hidden_layer = 80 metric_recorder = MetricRecorder(config_dir_path='.', job_id=job_id) C = { 'X_dirpath' : '../../../data/train_all/*', 'y_dirpath' : '../../../data/train_cleaned/', 'batchsize' : 500000, 'limit' : 20, 'epochs' : 4, 'patience' : 70000, 'patience_increase' : 2, 'improvement_threshold' : 0.995, 'validation_frequency' : 20, 'lmbda' : 0.0, 'training_size' : None, 'validation_size' : None, 'algorithm' : 'RMSProp', 'mini_batch_size': mbs } training_data = BatchProcessor( X_dirpath='../../../data/train_all/*', y_dirpath='../../../data/train_cleaned/', batchsize=C['batchsize'], border=border, limit=C['limit'], random=True, random_mode='fully', dtype=theano.config.floatX, rnd=rnd) validation_data = BatchProcessor( X_dirpath='../../../data/train/*', y_dirpath='../../../data/train_cleaned/', batchsize=C['batchsize'], random=False, border=border, limit=C['limit'], dtype=theano.config.floatX, rnd=rnd) C['training_size'] = training_data.size() C['validation_size'] = validation_data.size() print "Training size: %d" % C['training_size'] print "Validation size: %d" % C['validation_size'] metric_recorder.add_experiment_metainfo(constants=C) metric_recorder.start() n_in = (2*border+1)**2 net = Network([FullyConnectedLayer(n_in=n_in, n_out=n_hidden_layer, rnd=rnd), FullyConnectedLayer(n_in=n_hidden_layer, n_out=1, rnd=rnd)], C['mini_batch_size']) result = net.train(tdata=training_data, epochs=C['epochs'], mbs=C['mini_batch_size'], eta=eta, vdata=validation_data, lmbda=C['lmbda'], momentum=None, patience_increase=C['patience_increase'], improvement_threshold=C['improvement_threshold'], validation_frequency=C['validation_frequency'], metric_recorder=metric_recorder, save_dir='./model/%d_' % metric_recorder.job_id, early_stoping=False) print 'Time = %f' % metric_recorder.stop() print 'Result = %f' % result return float(result)
def train(job_id, params): print "Job ID: %d" % job_id eta = params["eta"] border = 2 n_hidden_layer = params["hidden"] metric_recorder = MetricRecorder(config_dir_path="./config.json", job_id=job_id) C = { "X_dirpath": "../../../data/onetext_train_small/*", "X_valid_dirpath": "../../../data/onetext_valid_small/*", "y_dirpath": "../../../data/train_cleaned/", "batchsize": 500000, "limit": None, "epochs": 4, "patience": 70000, "patience_increase": 2, "improvement_threshold": 0.995, "validation_frequency": 20, "lmbda": float(params["l2"][0]), "dropout": float(params["dropout"][0]), "training_size": None, "validation_size": None, "algorithm": "RMSProp", "eta": float(params["eta"][0]), "eta_min": params["eta_min"][0], "border": 2, "hidden": int(params["hidden"][0]), "mini_batch_size": 500, } training_data = BatchProcessor( X_dirpath=C["X_dirpath"], y_dirpath=C["y_dirpath"], batchsize=C["batchsize"], border=C["border"], limit=C["limit"], random=True, random_mode="fully", dtype=theano.config.floatX, rnd=rnd, ) validation_data = BatchProcessor( X_dirpath=C["X_valid_dirpath"], y_dirpath=C["y_dirpath"], batchsize=C["batchsize"], border=C["border"], limit=C["limit"], random=False, dtype=theano.config.floatX, rnd=rnd, ) C["training_size"] = training_data.size() C["validation_size"] = validation_data.size() print "Training size: %d" % C["training_size"] print "Validation size: %d" % C["validation_size"] metric_recorder.add_experiment_metainfo(constants=C) metric_recorder.start() n_in = (2 * border + 1) ** 2 net = Network( [ FullyConnectedLayer(n_in=n_in, n_out=C["hidden"], rnd=rnd), FullyConnectedLayer(n_in=C["hidden"], n_out=1, rnd=rnd), ], C["mini_batch_size"], ) result = net.train( tdata=training_data, epochs=C["epochs"], mbs=C["mini_batch_size"], eta=C["eta"], eta_min=C["eta_min"], vdata=validation_data, lmbda=C["lmbda"], momentum=None, patience_increase=C["patience_increase"], improvement_threshold=C["improvement_threshold"], validation_frequency=C["validation_frequency"], metric_recorder=metric_recorder, save_dir="./models/%d_" % metric_recorder.job_id, early_stoping=False, ) print "Time = %f" % metric_recorder.stop() print "Result = %f" % result return float(result)