validation_data=(val_x, val_y), epochs=NUM_EPOCHS, verbose=0, callbacks=[ExponentialMovingAverage()]) test_df = std_scaler.transform(test_df) raw_val_prob = model.predict(val_x) raw_test_prob = model.predict(test_df) test_pred = np.expm1(raw_test_prob) return results.history, test_pred, val_idx, raw_val_prob, raw_test_prob if __name__ == '__main__': start_time = time.time() preprocess_dict = preprocess_csv() (train_ids, test_ids, processed_train_df, processed_test_df) = [ preprocess_dict[key] for key in ['train_ids', 'test_ids', 'processed_train', 'processed_test'] ] folds = split_to_folds(processed_train_df, num_folds=NUM_FOLDS, seed=SEED, shuffle=False) all_fold_results = [] all_fold_preds = [] with Pool(NUM_FOLDS) as p: combined_results = p.starmap( train_fold, ((curr_fold, processed_train_df, processed_test_df)
test_df_1.astype('float32') * np.random.normal(1., scale=(0.1 / 0.9), size=test_df_1.shape), test_rolling.astype('float32') * np.random.normal( 1., scale=(0.1 / 0.9), size=test_rolling.shape) ])[0]) raw_test_prob = np.mean(np.stack(agg_test_prob, axis=0), axis=0) test_pred = np.expm1(np.dot(raw_test_prob, supports)) return results.history, test_pred, val_idx, raw_val_prob, raw_test_prob if __name__ == '__main__': start_time = time.time() preprocess_dict = preprocess_csv(rolling_macro={ 'min_unique': 20, 'lookback_period': 12, 'monthly_resampling': True }) (train_ids, test_ids, processed_train_df, processed_test_df, train_rolling, test_rolling) = [ preprocess_dict[key] for key in [ 'train_ids', 'test_ids', 'processed_train', 'processed_test', 'train_rolling', 'test_rolling' ] ] # generate distribution labels generate_target_partial = partial(generate_target_dist, num_bins=NUM_BINS, low=LOW,