def compare_accuracy(i, j, k): mr_errors = [] ss_errors = [] fpt_errors = [] for n in range(i, j): ans = prime.isPrime_par(n) if prime.mr(n, k) != ans: mr_errors.append(n) if prime.ss(n, k) != ans: ss_errors.append(n) if prime.fpt(n, k) != ans: fpt_errors.append(n) errors = (len(mr_errors), len(ss_errors), len(fpt_errors)) #print errors #print mr_errors #print ss_errors #print fpt_errors #_,ax = plot.subplots() #ax.set_title('Error Histrogram with k=' + str(k)) #ax.set_ylabel('#errors') #ax.set_ylim([0,50]) #ax.bar(range(0,3), errors, 0.5, color={'r','g','b'}) #ax.set_xticks(numpy.arange(3)+0.5/2) #ax.set_xticklabels(('MR', 'SS', 'FPT')) #plot.show() return errors
def compare_accuracy(i, j, k): mr_errors = [] ss_errors = [] fpt_errors = [] for n in range(i,j): ans = prime.isPrime_par(n) if prime.mr(n,k) != ans: mr_errors.append(n) if prime.ss(n,k) != ans: ss_errors.append(n) if prime.fpt(n,k) != ans: fpt_errors.append(n) errors = (len(mr_errors), len(ss_errors), len(fpt_errors)) #print errors #print mr_errors #print ss_errors #print fpt_errors #_,ax = plot.subplots() #ax.set_title('Error Histrogram with k=' + str(k)) #ax.set_ylabel('#errors') #ax.set_ylim([0,50]) #ax.bar(range(0,3), errors, 0.5, color={'r','g','b'}) #ax.set_xticks(numpy.arange(3)+0.5/2) #ax.set_xticklabels(('MR', 'SS', 'FPT')) #plot.show() return errors
def fpt_accuracy(i, j, k): fpt_errors = [] for n in range(i, j): ans = prime.isPrime_par(n) if prime.fpt(n, k) != ans: fpt_errors.append(n) errors = (len(fpt_errors)) return errors
def fpt_accuracy(i, j, k): fpt_errors = [] for n in range(i,j): ans = prime.isPrime_par(n) if prime.fpt(n,k) != ans: fpt_errors.append(n) errors = (len(fpt_errors)) return errors