print pm print "" print "------PosteriorMarginal:------" pm=mcmc_ask.calculate_PosteriorMarginal([age,height],{age:EvEqual(2)},NDGauss) print "P(age,height|age=2):" print pm print "Ground truth: age=2, height=mu:1.9,C=0.3" print "" pm=mcmc_ask.calculate_PosteriorMarginal([age,height],{age:EvLower(0.1)},NDGauss) print "P(age,height|age<0.1):" print pm print "Ground truth: age=0:0.1, height=mu:-0.1:0.0,C=0.3" print "" print "------PropabilityOfEvidence------" poe=mcmc_ask.calculate_PoE({age:EvLower(0.347)}) print "Probabilty that age is lower than it's median:" print "p(age<0.347)="+str(poe) print "Ground truth=0.5" print "" print "------MAP------" map_hypothesis=mcmc_ask.calculate_MAP([height,diameter],{},NDGauss) print map_hypothesis
#Parametrize the network burglary_cpt = numpy.array([0.2, 0.8]) burglary.set_probability_table(burglary_cpt, [burglary]) alarm_cpt = numpy.array([[0.8, 0.15, 0.05], [0.05, 0.9, 0.05]]) alarm.set_probability_table(alarm_cpt, [burglary, alarm]) #Get some inference object mcmc_ask = MCMC(bn, 5000, transition_model=GibbsTransitionModel()) #Do some Inferences evidence = {burglary: EvEq("Intruder")} print "-------ProbabilityOfEvidence:-------" poe = mcmc_ask.calculate_PoE(evidence) print "p(evidence=Intruder)=" + str(poe) print "Ground truth=0.2\n" print "-------PosteriorMarginal:-------" pm = mcmc_ask.calculate_PosteriorMarginal([alarm], evidence, ProbabilityTable) print "P(alarm|burglary=Intruder)=" + str(pm) print "Ground truth=[0.8, 0.15, 0.05]\n" print "-------PriorMarginal:-------" pm = mcmc_ask.calculate_PriorMarginal([alarm], ProbabilityTable) print "P(Alarm)= " + str(pm) print "Ground truth=[0.2, 0.75, 0.05]\n" pm = mcmc_ask.calculate_PriorMarginal([burglary], ProbabilityTable) print "P(Burglary)= " + str(pm)
mcmc_ask=MCMC(bn,1000) print "====MCMC====" print "Prior Marginal:" print "AlarmFT: " + str(mcmc_ask.calculate_PriorMarginal([alarm],ProbabilityTable)) print "John_CallsFT: " + str(mcmc_ask.calculate_PriorMarginal([john_calls],ProbabilityTable)) print "Baum_CallsFT: " + str(mcmc_ask.calculate_PriorMarginal([baum_calls],ProbabilityTable)) print "BurglaryFT: " + str(mcmc_ask.calculate_PriorMarginal([burglary],ProbabilityTable)) print "EarthquakeFT: " + str(mcmc_ask.calculate_PriorMarginal([earthquake],ProbabilityTable)) evidences = {alarm: EvEq("Ringing"),earthquake: EvEq("Calm")} print "PoE: " + str(mcmc_ask.calculate_PoE(evidences)) print "Posterior Marginal (alarm->ringing , earthquake->calm):" print "AlarmFT: " + str(mcmc_ask.calculate_PosteriorMarginal([alarm],evidences,ProbabilityTable)) print "John_CallsFT: " + str(mcmc_ask.calculate_PosteriorMarginal([john_calls],evidences,ProbabilityTable)) print "Baum_CallsFT: " + str(mcmc_ask.calculate_PosteriorMarginal([baum_calls],evidences,ProbabilityTable)) print "BurglaryFT: " + str(mcmc_ask.calculate_PosteriorMarginal([burglary],evidences,ProbabilityTable)) print "EarthquakeFT: " + str(mcmc_ask.calculate_PosteriorMarginal([earthquake],evidences,ProbabilityTable)) #evidence={burglary:"Intruder"}
#Parametrize the network burglary_cpt=numpy.array([0.2,0.8]) burglary.set_probability_table(burglary_cpt, [burglary]) alarm_cpt=numpy.array([[0.8,0.15,0.05],[0.05,0.9,0.05]]) alarm.set_probability_table(alarm_cpt, [burglary,alarm]) #Get some inference object mcmc_ask=MCMC(bn,5000,transition_model=GibbsTransitionModel()) #Do some Inferences evidence={burglary:EvEq("Intruder")} print "-------ProbabilityOfEvidence:-------" poe=mcmc_ask.calculate_PoE(evidence) print "p(evidence=Intruder)="+str(poe) print "Ground truth=0.2\n" print "-------PosteriorMarginal:-------" pm=mcmc_ask.calculate_PosteriorMarginal([alarm],evidence,ProbabilityTable) print "P(alarm|burglary=Intruder)="+str(pm) print "Ground truth=[0.8, 0.15, 0.05]\n" print "-------PriorMarginal:-------" pm=mcmc_ask.calculate_PriorMarginal([alarm],ProbabilityTable) print "P(Alarm)= " + str(pm) print "Ground truth=[0.2, 0.75, 0.05]\n" pm=mcmc_ask.calculate_PriorMarginal([burglary],ProbabilityTable) print "P(Burglary)= " + str(pm)