def dijkstra_search(root, goal, init, domprob, nb_robots, width, height): """Dijkstra search of a solution in a graph. Returns a path if there is any. The priority of each node represent the cost (if each action costs 1) to go from the root to the node. Parameters: root: Node object, the root of the state graph we're searching and building at the same time. goal: bitvector, the state we're searching. init: bitvector, the initial state of the maze. domprob: Domain-Problem object from the pddlpy lib. nb_robots: integer, the number of robots in the maze. width, height: integers, the dimensions of the maze. """ # Priority queue pqueue = PriorityQueue() # an empty set to maintain visited nodes closed_set = set() # a dictionary for path formation meta = dict() # key -> (parent state, action to reach child) # Operator list op_list = list(domprob.operators()) # initialize pqueue.insert(root) meta[root] = (None, None) ground_op_bv = get_ground_operator( op_list, domprob, init, nb_robots, width, height) print("Taille de ground_op : {}".format(len(ground_op_bv[0]))) while not pqueue.empty(): subtree_root = pqueue.dequeue() current_priority = subtree_root.priority if is_goal(subtree_root, goal): return construct_path(subtree_root, meta) # Create current node's children for op in ground_op_bv: subtree_root.build_children(op) for (child, action) in subtree_root.children: # The node has already been processed, so skip over it if child in closed_set: continue # The child is not enqueued to be processed, # so enqueue this level of children to be expanded if child not in pqueue.queue: child.priority = current_priority + 1 # Update the path meta[child] = (subtree_root, action) # Enqueue this node pqueue.insert(child) closed_set.add(subtree_root)
def get_surrounding_tiles(self, position, order='finish'): """ Liefert eine Queue der angrenzenden Tiles zurück.""" tiles = PriorityQueue(order) # print('Order: ', order) # self.surroundings for surround in self.surroundings: # Ränder abfragen # y unten if position[0] == len(self.tiles) - 1 and surround[0] == +1: continue # y oben if position[0] == 0 and surround[0] == -1: continue # x rechts if position[1] == len(self.tiles[0]) - 1 and surround[1] == +1: continue # x links if position[1] == 0 and surround[1] == -1: continue x = position[1] + surround[1] y = position[0] + surround[0] tiles.insert(self.tiles[y][x]) # Wenn Position am unteren Rande der y-Achse ist # tiles.sort(key=lambda x: x.estimated_cost_to_finish, reverse=False) return tiles
def get_path(self, start, end, board, cost_estimate=get_distance): t0 = time.time() explored = set() previous = {} previous[start] = None moves = {} moves[start] = 0 frontier = PriorityQueue() frontier.insert(start, cost_estimate(start, end)) if VERBOSE_ASTAR: print 'get_path start, end:', start, end while not frontier.is_empty(): if (time.time() - t0 > PATHFINDER_TIMEOUT): print 'PATHFINDING TIMEOUT: Averting disconnect...' print ' get_path: Probably could not find a valid path from', start, 'to', end return [start, start] if VERBOSE_ASTAR: print 'get_path frontier:', frontier current = frontier.remove() explored.add(current) if VERBOSE_ASTAR: print 'get_path explored set', explored if VERBOSE_ASTAR: print 'get_path current pos:', current if (current == end): if VERBOSE_ASTAR: print 'Found end loc' break else: neighbors = get_neighboring_locs(current, board) if VERBOSE_ASTAR: print 'get_path neighbors:', neighbors for n in neighbors: if n not in explored and (board.passable(n) or n in (start, end)): moves[n] = moves[current] + MOVE_COST frontier.insert(n, cost_estimate(n, end) + moves[n]) previous[n] = current # found goal, now reconstruct path i = end path = [i] while i != start: if (i in previous): path.append(previous[i]) i = previous[i] else: print 'get_path error: probably could not find a valid path from', start, 'to', end return [start, start] # return something valid path.reverse() return path
def choose_best(self, locs): best = None q = PriorityQueue() print 'choose best, locs:', locs if locs != None: for loc in locs: q.insert(loc, -self.score_loc(loc)) # by highest score best = q.remove() print 'choose best, best:', best return best
def main(): maze = Maze("maze2.png") paths = PriorityQueue() start = maze.getStart() end = maze.getEnd() paths.insert(PathHead(start[0], start[1], calcDistance(start, end))) current = paths.minimum() while paths.size() > 0 and current.getDistance() != 0.0: current = paths.extractMin() maze.setNodeVisited(current.getCords()) surroundings = maze.checkSurroundings(current.getCords()) insertSurroundings(paths, surroundings, current, end) solved = maze.getMaze() solved = numpy.array(solved) img = Image.fromarray(solved.astype('uint8'), 'RGB') img.save('solved.png')
import priorityqueue from priorityqueue import PriorityQueue import numpy as np pq = PriorityQueue(0, 20) ints = np.random.randint(1, 100, size=20) print("Inserting 20 integers into pq: {0}".format(ints)) [pq.insert(i) for i in ints] print("pq is full: {0}".format(pq.isFull())) print("pq size: {0}".format(pq.size())) print("Deleting 20 integers from pq: {0}".format( [pq.delMin() for i in range(20)], sep=',')) print("pq is empty: {0}".format(pq.isEmpty())) print("pq size: {0}".format(pq.size()))
class Navi: def __init__(self, position_start, position_finish, map): tiles = [] self.open_list = PriorityQueue() self.closed_list = PriorityQueue() # queue = PriorityQueue() self.map = map self.finish_reached = False self.route = [] self.position_start = position_start self.position_finish = position_finish self.open_list.insert( TileInfo(position_start, self.get_estimated_cost_to_finish(position_start), 0, -1, -1)) for y in range(0, map.height): tiles.append([]) for x in range(0, map.width): tile = TileInfo((y, x), map.tiles[y][x], self.get_estimated_cost_to_finish((y, x)), 99999, -1) tiles[y].append(tile) self.tiles = tiles self.navi_active = False self.recursion_level = 0 self.max_recursion_level = 100 self.use_diagonal_tiles = True # Array für die Abfrage der umgebenden Tiles self.surroundings = [] if self.use_diagonal_tiles == True: self.surroundings.append((-1, -1)) self.surroundings.append((-1, +1)) self.surroundings.append((+1, -1)) self.surroundings.append((+1, +1)) self.surroundings.append((-1, 0)) self.surroundings.append((0, -1)) self.surroundings.append((0, +1)) self.surroundings.append((+1, 0)) def navi_step(self, tile_work='next'): # map = self.map # print('navistep') self.recursion_level += 1 if tile_work == 'next': tile_work = self.open_list.get_and_delete() # pre_tile = self.tiles[tile_work.position[0]][tile_work.position[1]].pre_tile # Den Vorgänger-Tile des work-Tiles holen pre_tile = self.get_pre_tile(tile_work) # Wenn der Tile > -1 ist, hole die Kosten zum Start. if not pre_tile == -1: pre_tile_cost_from_start = self.tiles[pre_tile[0]][ pre_tile[1]].cost_from_start else: pre_tile_cost_from_start = -1 # Wenn der Work-Tile die Zielposition, also das Ziel erreicht ist. if tile_work.position == self.position_finish: self.map.add_status_text_with_clear("FINISH") tile_work.set_route_cost(pre_tile_cost_from_start + 1) self.route_finished(tile_work) self.finish_reached = True if pre_tile_cost_from_start >= 99999: pre_tile_cost_from_start = 0 # Work-Tile: Die Kosten zum Start sind Pre-Tile + 1 tile_work_cost_from_start = pre_tile_cost_from_start + 1 tile_work.set_cost_from_start(tile_work_cost_from_start) tile_work.set_route_cost( self.get_estimated_cost_to_finish(tile_work.position) + tile_work.cost_from_start) tile_work.status = 0 # Der Work-Tile wurde berechnet und kann also auf die Closed-List self.closed_list.insert(tile_work) self.tiles[tile_work.position[0]][ tile_work.position[1]].type = "closed" # Um weiter zu machen, holen wir uns die umgebenden Tiles surrounding_tiles = self.get_surrounding_tiles(tile_work.position) # Solange wir noch nicht alle Tiles bearbeitet haben, durchlaufen wir die while-Schleife while not surrounding_tiles.isEmpty(): # print(surrounding_tiles.get_size()) surrounding_tile = surrounding_tiles.get_and_delete() if surrounding_tile == False: # print("Surround: no next tiles") break if surrounding_tile.type == "wall": # print('Surround: wall') continue tile_cost_from_start = tile_work_cost_from_start + 1 if self.closed_list.exist(surrounding_tile): # Wenn ein Tile bereits in der closedlist ist, wurde er schon mal hinzugefügt # Es wird dann gecheckt, ob ...? # print('Surround: is in closedlist') continue elif self.open_list.exist(surrounding_tile): # Wenn ein Tile bereits in der openlist ist, wurde er schon mal hinzugefügt # Es wird dann gecheckt, ob ...? # print('Surround: is in openlist') tile_from_open_list = self.open_list.get_tile_and_delete( surrounding_tile) # print(tile_from_open_list.cost_from_start, tile_cost_from_start) if tile_from_open_list.cost_from_start + 1 >= tile_cost_from_start: # print('Surround: Neuer Weg ist teurer') continue else: # print('Surround: Neuer Weg ist günstiger') tile_from_open_list.cost_from_start = surrounding_tile.cost_from_start + 1 tile_from_open_list.set_route_cost( self.get_estimated_cost_to_finish( tile_from_open_list.position) + tile_work_cost_from_start) self.open_list.insert(tile_from_open_list) continue else: if surrounding_tile.position == tile_work.pre_tile: # Wenn der umliegende Tile der vorherige vom tile_work ist, kann er ignoriert werden continue # Wenn bis hierher nichts dagegen spricht, ist der Tile legitim, um ihn in nem navistep zu bearbeiten # pre-tile festlegen surrounding_tile.pre_tile = tile_work.position # Den pre-tile auch in der tiles.Liste festlegen self.tiles[surrounding_tile.position[0]][ surrounding_tile.position[1]].pre_tile = tile_work.position # In die open-list einfügen self.open_list.insert(surrounding_tile) # Entsprechenden Tile als open markieren self.tiles[surrounding_tile.position[0]][ surrounding_tile.position[1]].type = "open" # print("Open List: ", self.open_list.get_size()) # print("Closed List: ", self.closed_list.get_size()) # print(self.finish_reached) # if self.finish_reached == False and self.recursion_level < self.max_recursion_level: # self.navi_step() self.recursion_level = 0 return (tile_work.position, tile_work.route_cost) # self.navi_step(tile.position,position) def route_finished(self, tile): """ Route wurde gefunden! """ route = [] route.append(tile.position) next_tile = tile.pre_tile while True: route.append(next_tile) if len(route) > 1000: print('Finish: Route > 1000') break # print(next_tile) next_tile = self.tiles[next_tile[0]][next_tile[1]].pre_tile if next_tile == self.position_start: print('Finish: Start erreicht.') break if next_tile == -1: break for tile_position in route: self.tiles[tile_position[0]][tile_position[1]].type = "route" self.map.add_status_text("Kosten: " + str(tile.get_route_cost())) print("Kosten: ", tile.get_route_cost()) self.map.add_status_text("Länge Route: " + str(len(route))) print("Länge Route: ", len(route)) # print(route) self.navi_active = False self.position_start = tile.position def get_next_navi_tile(self, surrounding_tiles, position, last_position): """ Liefert den nächsten Navi-Tile zurück. Checkt, ob alle Bedingungen eingehalten werden.""" # Bedingungen: # 1. Tiletype != wand # 2. Tiletype != navi # 3. Tiletype != last_position # 4. Tile ist in self.queue for tile in surrounding_tiles: if not tile: return False tile_type = self.map.get_tile_type(tile.position) print(tile.position, tile_type) if not tile_type == "wall" and not tile_type == "navi" and not tile.position == last_position: return tile print("Sackgasse?") return False # if tile_surround.position == self.position_finish: # print("FINISH") # print("Routenlänge: ",len(self.route)) def get_estimated_cost_to_finish(self, position): """ Liefert die estimated cost an gegebener Position zurück.""" distance_to_point = float( sqrt((position[0] - self.position_finish[0])**2 + (position[1] - self.position_finish[1])**2)) return distance_to_point def get_pre_tile(self, tile): """ Liefert den Vorgänger zurück """ # print('get_pre_tile()') surrounding_tiles = self.get_surrounding_tiles(tile.position, order='start') # print('surrounding_tiles: ', surrounding_tiles) pre_tile = surrounding_tiles.get_and_delete() # print('pre_tile: ', pre_tile) return pre_tile.position def get_surrounding_tiles(self, position, order='finish'): """ Liefert eine Queue der angrenzenden Tiles zurück.""" tiles = PriorityQueue(order) # print('Order: ', order) # self.surroundings for surround in self.surroundings: # Ränder abfragen # y unten if position[0] == len(self.tiles) - 1 and surround[0] == +1: continue # y oben if position[0] == 0 and surround[0] == -1: continue # x rechts if position[1] == len(self.tiles[0]) - 1 and surround[1] == +1: continue # x links if position[1] == 0 and surround[1] == -1: continue x = position[1] + surround[1] y = position[0] + surround[0] tiles.insert(self.tiles[y][x]) # Wenn Position am unteren Rande der y-Achse ist # tiles.sort(key=lambda x: x.estimated_cost_to_finish, reverse=False) return tiles def show_open_list(self): for item in self.open_list.queue: print(item.position, item.get_estimated_cost_to_finish()) def get_open_list(self): return self.open_list.queue def get_closed_list(self): return self.closed_list.queue def show_closed_list(self): for item in self.closed_list.queue: print(item.position) def get_finish_tile(self): return self.tiles[self.position_finish[0]][self.position_finish[1]]
item = QueueItem("A", 1) assert (item is not None) assert (hasattr(item, "content")) assert (hasattr(item, "priority")) assert (item.content == "A") assert (item.priority == 1) q = PriorityQueue() assert (q is not None) assert (hasattr(q, "items")) assert (hasattr(q, "insert")) assert (hasattr(q, "delete")) assert (hasattr(q, "is_empty")) # A,1 B,2 C,3 D,4 E,5, F,6, G,7 q.insert("C", 3) assert (len(q.items) == 1) assert (q.items[0].priority == 3) assert (q.items[0].content == "C") assert (str(q) == "(C,3)") item = q.delete() assert (item.priority == 3) assert (item.content == "C") assert (len(q.items) == 0) assert (str(q) == "<<E>>") q.insert("C", 3) assert (len(q.items) == 1) assert (q.items[0].priority == 3) assert (q.items[0].content == "C")
class AStar(): ''' Properties: public: - world: 2D array of Nodes internal: - size: (width, height) tuple of world - open: Nodes queue to evaluate (heap-based priority queue) ''' #---------------------------------------------------------------------- def __init__(self, world): self.world = world self.size = (len(world), len(world[0])) # self.open = SortedList() self.open = PriorityQueue() self.openValue = 1 self.closedValue = 2 #---------------------------------------------------------------------- def initSearch(self, start, goal, obstacles): ''' first, check we can achieve the goal''' if goal.type in obstacles: return False ''' clear open list and setup new open/close value state to avoid the clearing of a closed list''' self.open.clear() self.openValue += 2 self.closedValue += 2 ''' then init search variables''' self.start = start self.goal = goal self.obstacles = obstacles self.start.cost = 0 self.addToOpen(self.start) self.goal.parent = None return True #---------------------------------------------------------------------- def search(self): while not self.openIsEmpty(): current = self.popFromOpen() if current == self.goal: break self.removeFromOpen(current) self.addToClosed(current) ''' generator passes : look at the 8 neighbours around the current node from open''' for (di, dj) in [(-1,-1), (-1,0), (-1,1), (0,-1), (0,1), (1,-1), (1,0), (1,1)]: neighbour = self.getNode(current.i + di, current.j + dj) if (not neighbour) or (neighbour.type in self.obstacles): continue '''the cost to get to this node is the current cost plus the movement cost to reach this node. Note that the heuristic value is only used in the open list''' nextStepCost = current.cost + self.getNeighbourCost(current, neighbour) '''if the new cost we've determined for this node is lower than it has been previously makes sure the node has not been determined that there might have been a better path to get to this node, so it needs to be re-evaluated''' if nextStepCost < neighbour.cost and (self.inOpenList(neighbour) or self.inClosedList(neighbour)): self.invalidateState(neighbour) '''if the node hasn't already been processed and discarded then step (i.e. to the open list)''' if (not self.inOpenList(neighbour)) and (not self.inClosedList(neighbour)): neighbour.cost = nextStepCost neighbour.heuristic = self.getHeuristicCost(neighbour, self.goal) neighbour.parent = current self.addToOpen(neighbour) ''' exit with None = path not yet found''' yield None '''since we've run out of search there was no path. Just return''' if self.goal.parent is None: return '''At this point we've definitely found a path so we can uses the parent references of the nodes to find out way from the target location back to the start recording the nodes on the way.''' path = [] goal = self.goal while goal is not self.start: path.insert(0, (goal.i, goal.j)) goal = goal.parent ''' done, exit with path''' yield path #----------------------------------------------------------------------------- def getNode(self, i, j): if i >=0 and i < self.size[0] and j >= 0 and j < self.size[1]: return self.world[i][j] else: return None #---------------------------------------------------------------------- def getNeighbourCost(self, n1, n2): return (abs(n2.i - n1.i) + abs(n2.j - n1.j)) #---------------------------------------------------------------------- def getHeuristicCost(self, n1, n2): return (abs(n2.i - n1.i) + abs(n2.j - n1.j)) #---------------------------------------------------------------------- def invalidateState(self, node): node.state = 0 #---------------------------------------------------------------------- def popFromOpen(self): # return self.open.first() return self.open.pop() #---------------------------------------------------------------------- def addToOpen(self, node): # self.open.add(node) self.open.insert(node) node.state = self.openValue #---------------------------------------------------------------------- def inOpenList(self, node): return node.state is self.openValue #---------------------------------------------------------------------- def removeFromOpen(self, node): # self.open.remove(node) self.open.remove(node) node.state = 0 #---------------------------------------------------------------------- def openIsEmpty(self): # return not self.open.size() return self.open.isEmpty() #---------------------------------------------------------------------- def addToClosed(self, node): node.state = self.closedValue #---------------------------------------------------------------------- def inClosedList(self, node): return node.state is self.closedValue
import priorityqueue from priorityqueue import PriorityQueue import numpy as np pq = PriorityQueue(0,20) ints = np.random.randint(1,100, size=20) print("Inserting 20 integers into pq: {0}".format(ints)) [pq.insert(i) for i in ints] print("pq is full: {0}".format(pq.isFull())) print("pq size: {0}".format(pq.size())) print("Deleting 20 integers from pq: {0}".format([pq.delMin() for i in range(20)], sep=',')) print("pq is empty: {0}".format(pq.isEmpty())) print("pq size: {0}".format(pq.size()))
class AStar(): ''' Properties: public: - world: 2D array of Nodes internal: - size: (width, height) tuple of world - open: Nodes queue to evaluate (heap-based priority queue) ''' #---------------------------------------------------------------------- def __init__(self, world): self.world = world self.size = (len(world), len(world[0])) # self.open = SortedList() self.open = PriorityQueue() self.openValue = 1 self.closedValue = 2 #---------------------------------------------------------------------- def initSearch(self, start, goal, obstacles): ''' first, check we can achieve the goal''' if goal.type in obstacles: return False ''' clear open list and setup new open/close value state to avoid the clearing of a closed list''' self.open.clear() self.openValue += 2 self.closedValue += 2 ''' then init search variables''' self.start = start self.goal = goal self.obstacles = obstacles self.start.cost = 0 self.addToOpen(self.start) self.goal.parent = None return True #---------------------------------------------------------------------- def search(self): while not self.openIsEmpty(): current = self.popFromOpen() if current == self.goal: break self.removeFromOpen(current) self.addToClosed(current) ''' generator passes : look at the 8 neighbours around the current node from open''' for (di, dj) in [(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1)]: neighbour = self.getNode(current.i + di, current.j + dj) if (not neighbour) or (neighbour.type in self.obstacles): continue '''the cost to get to this node is the current cost plus the movement cost to reach this node. Note that the heuristic value is only used in the open list''' nextStepCost = current.cost + self.getNeighbourCost( current, neighbour) '''if the new cost we've determined for this node is lower than it has been previously makes sure the node has not been determined that there might have been a better path to get to this node, so it needs to be re-evaluated''' if nextStepCost < neighbour.cost and ( self.inOpenList(neighbour) or self.inClosedList(neighbour)): self.invalidateState(neighbour) '''if the node hasn't already been processed and discarded then step (i.e. to the open list)''' if (not self.inOpenList(neighbour)) and ( not self.inClosedList(neighbour)): neighbour.cost = nextStepCost neighbour.heuristic = self.getHeuristicCost( neighbour, self.goal) neighbour.parent = current self.addToOpen(neighbour) ''' exit with None = path not yet found''' yield None '''since we've run out of search there was no path. Just return''' if self.goal.parent is None: return '''At this point we've definitely found a path so we can uses the parent references of the nodes to find out way from the target location back to the start recording the nodes on the way.''' path = [] goal = self.goal while goal is not self.start: path.insert(0, (goal.i, goal.j)) goal = goal.parent ''' done, exit with path''' yield path #----------------------------------------------------------------------------- def getNode(self, i, j): if i >= 0 and i < self.size[0] and j >= 0 and j < self.size[1]: return self.world[i][j] else: return None #---------------------------------------------------------------------- def getNeighbourCost(self, n1, n2): return (abs(n2.i - n1.i) + abs(n2.j - n1.j)) #---------------------------------------------------------------------- def getHeuristicCost(self, n1, n2): return (abs(n2.i - n1.i) + abs(n2.j - n1.j)) #---------------------------------------------------------------------- def invalidateState(self, node): node.state = 0 #---------------------------------------------------------------------- def popFromOpen(self): # return self.open.first() return self.open.pop() #---------------------------------------------------------------------- def addToOpen(self, node): # self.open.add(node) self.open.insert(node) node.state = self.openValue #---------------------------------------------------------------------- def inOpenList(self, node): return node.state is self.openValue #---------------------------------------------------------------------- def removeFromOpen(self, node): # self.open.remove(node) self.open.remove(node) node.state = 0 #---------------------------------------------------------------------- def openIsEmpty(self): # return not self.open.size() return self.open.isEmpty() #---------------------------------------------------------------------- def addToClosed(self, node): node.state = self.closedValue #---------------------------------------------------------------------- def inClosedList(self, node): return node.state is self.closedValue
def find(mapdata, width, height, start, end): """ mapdata is a one-dimensional list of values, start and end are vectors of size 2 """ # WRITE THIS FUNCTION open = PriorityQueue() closed = [] curTile = MapTile(start, None, None, None, None) print(width, height, start, end) while curTile.coords != end: if onMap(curTile.coords, width, height): n = north(curTile.coords) nter = terraintype(mapdata, width, height, n) ntile = MapTile(n, LAT_COST, mandistance(n, end), nter, curTile) if nter and (ntile not in closed): print(ntile) open.insert(ntile) s = south(curTile.coords) ster = terraintype(mapdata, width, height, s) stile = MapTile(s, LAT_COST, mandistance(s, end), ster, curTile) if ster and (stile not in closed): print(stile) open.insert(stile) e = east(curTile.coords) eter = terraintype(mapdata, width, height, e) etile = MapTile(e, LAT_COST, mandistance(e, end), eter, curTile) if eter and (etile not in closed): print(etile) open.insert(etile) w = west(curTile.coords) wter = terraintype(mapdata, width, height, w) wtile = MapTile(w, LAT_COST, mandistance(w, end), wter, curTile) if wter and (wtile not in closed): print(wtile) open.insert(wtile) nw = northwest(curTile.coords) nwter = terraintype(mapdata, width, height, nw) nwtile = MapTile(nw, DIAG_COST, mandistance(nw, end), nwter, curTile) if nwter and (nwtile not in closed): print(nwtile) open.insert(nwtile) ne = northeast(curTile.coords) neter = terraintype(mapdata, width, height, ne) netile = MapTile(ne, DIAG_COST, mandistance(ne, end), neter, curTile) if neter and (netile not in closed): print(netile) open.insert(netile) sw = southwest(curTile.coords) swter = terraintype(mapdata, width, height, sw) swtile = MapTile(sw, DIAG_COST, mandistance(sw, end), swter, curTile) if swter and (swtile not in closed): print(swtile) open.insert(swtile) se = southeast(curTile.coords) seter = terraintype(mapdata, width, height, se) setile = MapTile(se, DIAG_COST, mandistance(se, end), seter, curTile) if seter and (setile not in closed): print(setile) open.insert(setile) closed.append(curTile) print(open) curTile = open.remove() path = [] if curTile.coords == end: while curTile.parent is not None: path.append(curTile.parent) curTile = curTile.parent print(path)