def LSTM_model(self, conf, arm_shape): road_num = arm_shape[0] input_x = Input((road_num, conf.observe_length, 1)) output = MyReshape(conf.batch_size)(input_x) output = LSTM(conf.observe_length)(output) output = Dense(conf.predict_length)(output) output = MyInverseReshape(conf.batch_size)(output) model = Model(inputs=input_x, outputs=output) return model
def LCRNNBN_model(self, conf, arm_shape): road_num = arm_shape[0] A = arm_shape[1] input_x = Input((road_num, conf.observe_length, 1)) input_ram = Input(arm_shape) output = Lookup(conf.batch_size)([input_x, input_ram]) output = Conv3D(16, (1, A, 2), activation="relu")(output) output = BatchNormalization()(output) output = LookUpSqueeze()(output) output = Lookup(conf.batch_size)([output, input_ram]) output = Conv3D(16, (1, A, 2), activation="relu")(output) output = BatchNormalization()(output) output = LookUpSqueeze()(output) output = Lookup(conf.batch_size)([output, input_ram]) output = Conv3D(16, (1, A, 2), activation="relu")(output) output = BatchNormalization()(output) output = LookUpSqueeze()(output) output = MyReshape(conf.batch_size)(output) output = SimpleRNN(5)(output) inputs = [input_x, input_ram] if conf.use_externel: output = Dense(conf.predict_length, activation="relu")(output) output = MyInverseReshape(conf.batch_size)(output) input_e, output_e = self.__E_input_output(conf, arm_shape) if isinstance(input_e, list): inputs += input_e else: inputs += [input_e] if conf.use_matrix_fuse: outputs = [matrixLayer()(output)] outputs.append(matrixLayer()(output_e)) output = Add()(outputs) else: output = Add()([output, output_e]) output = Activation("tanh")(output) else: output = Dense(conf.predict_length, activation="tanh")(output) output = MyInverseReshape(conf.batch_size)(output) model = Model(inputs=inputs, outputs=output) return model
def RNN_model(self, conf, arm_shape): road_num = arm_shape[0] input_x = Input((road_num, conf.observe_length, 1)) output = MyReshape(conf.batch_size)(input_x) # output = SimpleRNN(32, return_sequences=True)(output) output = SimpleRNN(conf.observe_length)(output) # output = Dropout(0.1)(output) output = Dense(conf.predict_length, activation="tanh")(output) output = MyInverseReshape(conf.batch_size)(output) model = Model(inputs=input_x, outputs=output) return model
def __E_input_output(self, conf, arm_shape, activation="tanh"): road_num = arm_shape[0] if conf.observe_p != 0: input_x1 = Input((road_num, conf.observe_p)) output1 = MyReshape(conf.batch_size)(input_x1) output1 = Dense(conf.observe_p + 1, activation="relu")(output1) if conf.observe_t != 0: input_x2 = Input((road_num, conf.observe_t)) output2 = MyReshape(conf.batch_size)(input_x2) output2 = Dense(conf.observe_t + 1, activation="relu")(output2) if conf.observe_p != 0: if conf.observe_t != 0: output = Concatenate()([output1, output2]) input_x = [input_x1, input_x2] else: output = output1 input_x = input_x1 else: output = output2 input_x = input_x2 output = Dense(conf.predict_length, activation=activation)(output) output = MyInverseReshape(conf.batch_size)(output) input_x3 = Input((conf.predict_length, 37)) # 37 is externel dim if isinstance(input_x, list): input_x += [input_x3] else: input_x = [input_x, input_x3] output_3 = MyReshape(conf.batch_size)(input_x3) output_3 = Dense(road_num, activation=activation)(output_3) output_3 = MyInverseReshape(conf.batch_size)(output_3) output_3 = Reshape((road_num, conf.predict_length))(output_3) output = Add()([output, output_3]) return input_x, output
def CRNN_model(self, conf, arm_shape): road_num = arm_shape[0] input_x = Input((road_num, conf.observe_length, 1)) output = Conv2D(32, (2, 2), strides=(1, 1), padding="same")(input_x) output = MaxPooling2D(pool_size=(1, 2))(output) output = Activation(activation="relu")(output) output = Conv2D(16, (2, 2), strides=(1, 1), padding="same")(output) # pool2 = AveragePooling2D(pool_size=(1,2))(conv2) # pool2 = Activation(activation="sigmoid")(conv2) # conv3 = Conv2D(4, (2, 2), strides=(1, 1), padding="same")(pool2) # pool3 = AveragePooling2D(pool_size=(1, 2))(conv3) output = Activation(activation="relu")(output) output = MyReshape(conf.batch_size)(output) output = SimpleRNN(5)(output) output = Dense(conf.predict_length)(output) output = MyInverseReshape(conf.batch_size)(output) # f = Flatten()(pool3) # output = Dense(road_num * conf.predict_length, activation="sigmoid")(f) # output = Reshape((road_num, conf.predict_length))(output) model = Model(inputs=input_x, outputs=output) return model