Esempio n. 1
0
 def mirror_str_test(a, b):
     ab = a + b
     if len(ab) > 5:
         if is_prime(int(ab)) and is_prime(int(b + a)):
             return True
     elif ab in primes and b + a in primes:
         return True
     return False
Esempio n. 2
0
def prime_summations(n):
    '''
    problem 77
    '''
    prime_sums, primes = {0:1,1:0}, []
    for i in range(2,n):
        if is_prime(i):
            primes.append(i)

    return prime_sums
Esempio n. 3
0
def pandigital_prime(num_digits = 4):
    '''
    find largest number that uses all digits 1 through num_digits and is prime
    problem 41
    '''
    for num_d in range(num_digits,0,-1):
        digits = [str(d) for d in range(1,num_d+1)]
        perms = itertools.permutations(''.join(reversed(digits)))
        for i in perms:
            num = int(''.join(i))
            if is_prime(num): return num
Esempio n. 4
0
def truncatable_primes(maximum = 1000000):
    '''
    find all eleven 'truncatable' primes
    problem 37
    '''
    poss_digits = set('1379')
    all_primes = get_all_primes_under(maximum)
    poss_primes = [p for p in [str(p) for p in all_primes] if set(p[1:]) <= poss_digits]
    #primes can only be composed of the digits 1,3,7, and 9
    #after the first digit

    final_primes = []
    for p in poss_primes:
        found = True
        length = len(p)
        for i in range(0,length):
            if not is_prime(int(p[i:])) or not is_prime(int(p[:i+1])):
                found = False
                break
        if found: final_primes.append(int(p))
    return final_primes
Esempio n. 5
0
def is_circular_prime(n):
    '''
    return whether circle prime or not
    problem 35
    '''

    if type(n) != int:
        raise TypeError


    if not is_prime(n):
        return False

    s = str(n)
    length = len(s)
    i = 0
    while i < length:
        i += 1
        if not is_prime(int(rotate_string(s,i))):
            return False

    return True
Esempio n. 6
0
def alternate_prime_sum():
    ps=get_all_primes_under(3946)
    mt,ms,mcps=len(ps),sum(ps),(0,0)
    while mt>mcps[0]:
        ls=ms if ms%2 else ms-1
        while not is_prime(ls): ls-=2
        k,ts=0,ms
        while ts-ls>0: ts-=ps[k]; k+=1
        if ts==ls and mt-k>mcps[0]: mcps=(mt-k,ts)
        mt-=1
        ms-=ps[mt]

    print(mcps)
Esempio n. 7
0
def quadratic_prime_with_a_and_b_under(maximum):
    '''
    returns a list of tuple (a,b) from 'n^2 + an + b' and an integer
    representing how effective that quad is at predicting primes for
    consecutive n values.

    b must be a prime (0 + 0a + b) if at all effective, and a+b+1 must
    be a prime to get 2

    problem 27
    '''
    primes_under_max = get_all_primes_under(maximum)
    products = itertools.product(range(-maximum,maximum+1),primes_under_max)
    terms = {(a,b):2 for (a,b) in products if a+b+1 in primes_under_max or is_prime(a+b+1)}
    for (a,b),num in terms.items():
        n = 2
        q = get_quadratic(n,a,b)
        while q in primes_under_max if q < maximum else is_prime(q):
            n += 1
            q = get_quadratic(n,a,b)

        terms[(a,b)] = n-1
    return terms
Esempio n. 8
0
def main():
    start = time.time()
    
    primes = list()
    p = 2
    limit = 2*10**6
    while p <=limit:
        if problem_7.is_prime(p):
            primes.append(p)
            
        p +=1
        
    print sum(primes)
    end = time.time()
    print "time: %s" % (end-start)
Esempio n. 9
0
def spiral_prime_ratio(i = 10):
    '''
    find the first ring of spiral prime at which the ratio of primes
    is less than given %
    problem 58
    '''

    percent = 100/i
    primes = 0
    corners = 1
    for i in range(2,10**6,2):
        side = i+1
        square = side**2
        primes += len([c for c in range(1,4) if is_prime(square-(c*i))])
        corners += 4
        if percent*primes < corners:
            return (side,primes,corners)
Esempio n. 10
0
def prime_summations(limit):
    primes = []
    sums = defaultdict(int)

    n = 0
    while True:
        if is_prime(n):
            sums[n] += 1
            primes.append(n)

        sums[n] += sum(sums[n-k] for k in primes if k <= n / 2)
        print sums
        if n == 7:
            print [(n-k, sums[n-k]) for k in primes if k <= n / 2]
        if sums[n] >= limit:
            return n
        n += 1
Esempio n. 11
0
def get_circular_primes_under(maximum):
    '''
    find all circular primes under a given maximum
    problem 35
    '''

    if type(maximum) != int:
        raise TypeError

    sieve = {d:0 for d in range(1,maximum+1)}

    for (i,v) in sieve.items():
        if v != 0:
            continue
        strung = str(i)
        length = len(strung)
        if '0' in strung:
            possibilities = [i] + [int(rotate_string(strung,j)) for j in range(1,length) if rotate_string(strung,j)[0] != '0']
        else:
            possibilities = [i]+[int(rotate_string(strung,j)) for j in range(1,length)]
        found = 1 if len([p for p in possibilities if is_prime(p)]) == length else -1
        sieve.update({p:found for p in possibilities})
    return [k for (k,v) in sieve.items() if v == 1]