Esempio n. 1
0
def select_model(m):
    if m == 'large':
        # raise ValueError
        model = pblm.cifar_model_large().cuda()
    else:
        model = pblm.cifar_model().cuda()
    return model
Esempio n. 2
0
def select_model(m): 
    if m == 'large': 
        # raise ValueError
        model = pblm.cifar_model_large().cuda()
    elif m == 'resnet': 
        model = pblm.cifar_model_resnet(N=args.resnet_N, factor=args.resnet_factor).cuda()
    else: 
        model = pblm.cifar_model().cuda() 
    return model
Esempio n. 3
0
def select_model(m):
    if m == 'small':
        model = pblm.cifar_model().cuda()
    elif m == 'large':
        model = pblm.cifar_model_large().cuda()
    # elif m == 'resNet':
    #     model = pblm.cifar_model_resnet().cuda()
    else:
        raise ValueError('model argument not recognized for imagenet')
    return model
def select_model(m):
    if m == 'large':
        # raise ValueError
        model = pblm.cifar_model_large().to(device)
    elif m == 'resnet':
        model = pblm.cifar_model_resnet(N=args.resnet_N,
                                        factor=args.resnet_factor).to(device)
    else:
        model = pblm.cifar_model().to(device)

    summary(model, (3, 32, 32))
    return model
Esempio n. 5
0
def select_model(m):
    if m == 'large':
        # raise ValueError
        model = pblm.cifar_model_large().cuda()
    elif m == 'resnet':
        model = pblm.cifar_model_resnet(N=args.resnet_N,
                                        factor=args.resnet_factor).cuda()
    elif m == 'm1':
        print('using a reduced sized network')
        model = pblm.cifar_model_m1().cuda()
    elif m == 'm2':
        print('using a slightly reduced sized network')
        model = pblm.cifar_model_m2().cuda()
    else:
        model = pblm.cifar_model().cuda()
    return model