Esempio n. 1
0
    def evaluate_explicit_from_fsdd(self, custom_semiring=None):
        try:
            parser = DefaultPrologParser(ExtendedPrologFactory())
            lf = PrologFile(filename, parser=parser)
            kc = _ForwardSDD.create_from(lf)  # type: _ForwardSDD
            kc = kc.to_explicit_encoding()

            if custom_semiring is not None:
                semiring = custom_semiring  # forces the custom semiring code.
            elif logspace:
                semiring = SemiringLogProbability()
            else:
                semiring = SemiringProbability()

            computed = kc.evaluate(semiring=semiring)
            computed = {str(k): v for k, v in computed.items()}
        except Exception as err:
            #print("exception %s" % err)
            e = err
            computed = None

        if computed is None:
            self.assertEqual(correct, type(e).__name__)
        else:
            self.assertIsInstance(correct, dict)
            self.assertSequenceEqual(correct, computed)

            for query in correct:
                self.assertAlmostEqual(correct[query],
                                       computed[query],
                                       msg=query)
Esempio n. 2
0
def run_test_with_query_instance():

    from problog.program import PrologString
    from problog.engine import DefaultEngine
    from problog.logic import Term, Var
    p = PrologString("""
    coin(c1). coin(c2).
    0.4::heads(C); 0.6::tails(C) :- coin(C).
    win :- heads(C).
    """)
    from .formula_wrapper import FormulaWrapper

    s_qs, s_evs = ([Term("win")], [(Term("heads",
                                         Term("c1")), False)])  # For now

    engine = DefaultEngine()
    probsr = SemiringProbability()
    fw = FormulaWrapper(engine.prepare(p))
    qobj = AMCQuery(s_qs, s_evs, fw, target_class=DDNNF, semiring=probsr)

    qobj.ground(engine)
    result, ground_evidence = qobj.evaluate(engine)
    print("evidence: ", ground_evidence)
    for r in result:
        print(r)
    print("---")
Esempio n. 3
0
def run_tests_with_static_methods():
    from problog.program import PrologString
    from problog.engine import DefaultEngine
    from problog.logic import Term, Var
    p = PrologString("""
    coin(c1). coin(c2).
    0.4::heads(C); 0.6::tails(C) :- coin(C).
    win :- heads(C).
    """)

    qs, evs = ([Term("win")], [(Term("heads", Term("c1")), False)])  # For now

    engine = DefaultEngine()
    db = engine.prepare(p)
    labels = (LogicFormula.LABEL_QUERY, LogicFormula.LABEL_EVIDENCE_POS,
              LogicFormula.LABEL_EVIDENCE_NEG)
    lf = LogicFormula()
    lf = AMCQuery.ground_query_evidence(engine, db, qs, evs, lf, labels)

    circuit = AMCQuery.compile_to_circuit(lf, "ddnnf")
    prob_sr = SemiringProbability()
    results, ground_evidence = AMCQuery.evaluate_circuit(
        circuit, labels, prob_sr)
    print("evidence: ", ground_evidence)
    for r in results:
        print(r)
    print("---")
Esempio n. 4
0
def mpe_maxsat(dag, verbose=0, solver=None):
    if dag.queries():
        print('%% WARNING: ignoring queries in file', file=sys.stderr)
        dag.clear_queries()

    logger = init_logger(verbose)
    logger.info('Ground program size: %s' % len(dag))

    cnf = CNF.createFrom(dag)

    for qn, qi in cnf.evidence():
        if not cnf.is_true(qi):
            cnf.add_constraint(TrueConstraint(qi))

    queries = list(cnf.labeled())

    logger.info('CNF size: %s' % cnf.clausecount)

    if not cnf.is_trivial():
        solver = get_solver(solver)

        with Timer('Solving'):
            result = frozenset(solver.evaluate(cnf))
        weights = cnf.extract_weights(SemiringProbability())
        output_facts = None
        prob = 1.0
        if result is not None:
            output_facts = []

            if queries:
                for qn, qi, ql in queries:
                    if qi in result:
                        output_facts.append(qn)
                    elif -qi in result:
                        output_facts.append(-qn)
            for i, n, t in dag:
                if t == 'atom':
                    if i in result:
                        if not queries:
                            output_facts.append(n.name)
                        prob *= weights[i][0]
                    elif -i in result:
                        if not queries:
                            output_facts.append(-n.name)
                        prob *= weights[i][1]
    else:
        prob = 1.0
        output_facts = []

    return prob, output_facts
Esempio n. 5
0
def main(inputfile, semiring, **kwdargs):

    pl = PrologFile(inputfile)

    if semiring == 'prob':
        sm = SemiringProbability()
    elif semiring == 'mpe':
        sm = SemiringMPE()
    elif semiring == 'mpe_state':
        sm = SemiringMPEState()

    result = solve(pl, semiring=sm)

    for k, v in result.items():
        print ('%s: %s' % (k, v))
Esempio n. 6
0
 def ad_atom_duplicate(self, eval_name=None):
     """
     This test must pickup the case where during the transformation, additional _extra atoms are created because
     add_atom(..., cr_extra=True) is used instead of cr_extra=False.
     """
     program = """
                 0.2::a ; 0.8::b.
                 query(a).
                 query(b).
             """
     pl = PrologString(program)
     lf = LogicFormula.create_from(pl, label_all=True, avoid_name_clash=True)
     semiring = SemiringProbability()
     kc_class = get_evaluatable(name=eval_name, semiring=semiring)
     kc = kc_class.create_from(lf)  # type: LogicFormula
     self.assertEqual(3, kc.atomcount)
Esempio n. 7
0
def mpe_maxsat(dag, verbose=0, solver=None, minpe=False):
    logger = init_logger(verbose)
    logger.info("Ground program size: %s" % len(dag))

    cnf = CNF.createFrom(dag, force_atoms=True)
    for qn, qi in cnf.evidence():
        if not cnf.is_true(qi):
            cnf.add_constraint(TrueConstraint(qi))

    queries = list(cnf.labeled())

    logger.info("CNF size: %s" % cnf.clausecount)

    if not cnf.is_trivial():
        solver = get_solver(solver)

        with Timer("Solving"):
            result = frozenset(solver.evaluate(cnf, invert_weights=minpe))
        weights = cnf.extract_weights(SemiringProbability())
        output_facts = None
        prob = 1.0
        if result is not None:
            output_facts = []

            if queries:
                for qn, qi, ql in queries:
                    if qi in result:
                        output_facts.append(qn)
                    elif -qi in result:
                        output_facts.append(-qn)
            for i, n, t in dag:
                if t == "atom":
                    if i in result:
                        if not queries:
                            output_facts.append(n.name)
                        prob *= weights[i][0]
                    elif -i in result:
                        if not queries:
                            output_facts.append(-n.name)
                        prob *= weights[i][1]
    else:
        prob = 1.0
        output_facts = []

    return prob, output_facts
Esempio n. 8
0
    def test(self) :
        try :
            parser = DefaultPrologParser(ExtendedPrologFactory())
            sdd = SDD.createFrom(PrologFile(filename, parser=parser))

            if logspace :
                semiring = SemiringLogProbability()
            else :
                semiring = SemiringProbability()

            computed = sdd.evaluate(semiring=semiring)
            computed = { str(k) : v for k,v in computed.items() }
        except Exception as err :
            e = err
            computed = None

        if computed is None :
            self.assertEqual(correct, type(e).__name__)
        else :
            self.assertIsInstance( correct, dict )
            self.assertSequenceEqual(correct, computed)

            for query in correct :
                self.assertAlmostEqual(correct[query], computed[query], msg=query)
Esempio n. 9
0
 def create_query(query_type, queries, evidence, formula_wrapper, **kwargs):
     if query_type == QueryFactory.QueryType.PROBABILITY:
         return AMCQuery(queries,
                         evidence,
                         formula_wrapper,
                         semiring=SemiringProbability(),
                         **kwargs)
     elif query_type == QueryFactory.QueryType.MPE:
         return AMCQuery(queries,
                         evidence,
                         formula_wrapper,
                         semiring=SemiringMPEState(),
                         **kwargs)
     elif query_type == QueryFactory.QueryType.MINPE:
         return AMCQuery(queries,
                         evidence,
                         formula_wrapper,
                         semiring=SemiringMinPEState(),
                         **kwargs)
     elif query_type == QueryFactory.QueryType.SAMPLE:
         return SampleQuery(queries, evidence, formula_wrapper, **kwargs)
     else:
         raise NotImplementedError("query_type not yet supported: %s" %
                                   str(query_type))
Esempio n. 10
0
 def __init__(self):
     self._semiring = SemiringProbability()
Esempio n. 11
0
class SemiringProbabilityCopy(Semiring):
    """Mocking SemiringProbability to force the 'custom semiring' code -> Must not extend SemiringProbability."""
    def __init__(self):
        self._semiring = SemiringProbability()

    def one(self):
        return self._semiring.one()

    def zero(self):
        return self._semiring.zero()

    def is_one(self, value):
        return self._semiring.is_one(value)

    def is_zero(self, value):
        return self._semiring.is_zero(value)

    def plus(self, a, b):
        return self._semiring.plus(a, b)

    def times(self, a, b):
        return self._semiring.times(a, b)

    def negate(self, a):
        return self._semiring.negate(a)

    def normalize(self, a, z):
        return self._semiring.normalize(a, z)

    def value(self, a):
        return self._semiring.value(a)

    def is_dsp(self):
        return self._semiring.is_dsp()

    def in_domain(self, a):
        return self._semiring.in_domain(a)
Esempio n. 12
0
    def __init__(self,
                 source,
                 examples,
                 max_iter=10000,
                 min_improv=1e-10,
                 verbose=0,
                 knowledge=None,
                 leakprob=None,
                 propagate_evidence=True,
                 normalize=False,
                 **extra):
        """
        :param source: filename of file containing input model
        :type source: str
        :param examples: list of observed terms / value
        :type examples: list[tuple(Term, bool)]
        :param max_iter: maximum number of iterations to run
        :type max_iter: int
        :param min_improv: minimum improvement in log-likelihood for convergence detection
        :type min_improv: float
        :param verbose: verbosity level
        :type verbose: int
        :param knowledge: class to use for knowledge compilation
        :type knowledge: class
        :param leakprob: Add all true evidence atoms with the given probability
                         to avoid 'inconsistent evidence' errors. This also
                         allows to learn a program without constants and
                         retrieve the constants from the evidence file.
                         (default: None)
        :type leakprob: float or None
        :param extra: catch all for additional parameters (not used)
        """
        SemiringProbability.__init__(self)
        LogicProgram.__init__(self)
        self.source = source

        # The names of the atom for which we want to learn weights.
        self.names = []

        # The weights to learn.
        # The initial weights are of type 'float'.
        # When necessary they are replaced by a dictionary [t(arg1, arg2, ...) -> float]
        #  for weights of form t(SV, arg1, arg2, ...).
        self._weights = []

        self.examples = examples
        self.leakprob = leakprob
        self.leakprobatoms = None
        self.propagate_evidence = propagate_evidence
        self._compiled_examples = None

        self.max_iter = max_iter
        self.min_improv = min_improv
        self.verbose = verbose
        self.iteration = 0

        if knowledge is None:
            knowledge = get_evaluatable()
        self.knowledge = knowledge

        self.output_mode = False
        self.extra = extra

        self._enable_normalize = normalize
        self._adatoms = []
Esempio n. 13
0
 def __init__(self, weights):
     SemiringProbability.__init__(self)
     self._weights = weights