Esempio n. 1
0
def logistic_ode():

    # Below is for consistency with pytest & unittest.
    # Without a seed, unittest passes but pytest fails.
    # I tried multiple seeds, they all work equally well.
    np.random.seed(12345)
    delta_t = 0.2
    tmax = 2

    logistic = pnd.logistic((0, tmax),
                            initrv=Constant(np.array([0.1])),
                            params=(6, 1))
    dynamod = pnss.IBM(ordint=3, spatialdim=1)
    measmod = pnfs.DiscreteEKFComponent.from_ode(logistic,
                                                 dynamod,
                                                 np.zeros((1, 1)),
                                                 ek0_or_ek1=1)

    initmean = np.array([0.1, 0, 0.0, 0.0])
    initcov = np.diag([0.0, 1.0, 1.0, 1.0])
    initrv = Normal(initmean, initcov)

    return dynamod, measmod, initrv, {
        "dt": delta_t,
        "tmax": tmax,
        "ode": logistic
    }
Esempio n. 2
0
    def test_inputs(self):
        """Inputs rejected or accepted according to expected types."""
        numpy_array = np.ones(3) * Constant(0.1)
        constant_list = [Constant(0.1), Constant(0.4)]
        number_list = [0.5, 0.41]
        inputs = [numpy_array, constant_list, number_list]
        inputs_acceptable = [False, True, False]

        for inputs, is_acceptable in zip(inputs, inputs_acceptable):
            with self.subTest(input=inputs, is_acceptable=is_acceptable):

                if is_acceptable:
                    _RandomVariableList(inputs)
                else:
                    with self.assertRaises(TypeError):
                        _RandomVariableList(inputs)
    def test_fitzhughnagumo(self):
        """Test the FHN IVP convenience function."""
        rv = Constant(np.ones(2))
        lg1 = ivp_examples.fitzhughnagumo(self.tspan, rv)
        lg2 = ivp_examples.fitzhughnagumo(self.tspan, rv, params=(1.0, 1.0, 1.0, 1.0))

        self.assertIsInstance(lg1, ivp.IVP)
        self.assertIsInstance(lg2, ivp.IVP)
    def test_lotkavolterra(self):
        """Test the LV ODE convenience function."""
        rv = Constant(np.ones(2))
        lg1 = ivp_examples.lotkavolterra(self.tspan, rv)
        lg2 = ivp_examples.lotkavolterra(self.tspan, rv, params=(1.0, 1.0, 1.0, 1.0))

        self.assertIsInstance(lg1, ivp.IVP)
        self.assertIsInstance(lg2, ivp.IVP)
    def test_seir(self):
        """Test the SEIR ODE convenience function."""
        rv = Constant(np.array([1.0, 0.0, 0.0, 0.0]))
        lg1 = ivp_examples.seir(self.tspan, rv)
        lg2 = ivp_examples.seir(self.tspan, rv, params=(1.0, 1.0, 1.0, 1.0))

        self.assertIsInstance(lg1, ivp.IVP)
        self.assertIsInstance(lg2, ivp.IVP)
Esempio n. 6
0
 def step(self, start, stop, current):
     h = stop - start
     x = current.mean
     xnew = x + h * self.ivp(start, x)
     return (
         Constant(xnew),
         np.nan,
     )  # return nan as error estimate to ensure that it is not used
Esempio n. 7
0
 def initialize(self, ivp):
     return diffeq.ODESolverState(
         ivp=ivp,
         rv=Constant(ivp.y0),
         t=ivp.t0,
         error_estimate=np.nan,
         reference_state=None,
     )
    def test_logistic(self):
        """Test the logistic ODE convenience function."""
        rv = Constant(0.1)
        lg1 = ivp_examples.logistic(self.tspan, rv)
        lg2 = ivp_examples.logistic(self.tspan, rv, params=(1.0, 1.0))

        self.assertIsInstance(lg1, ivp.IVP)
        self.assertIsInstance(lg2, ivp.IVP)
Esempio n. 9
0
 def setUp(self):
     initrv = Constant(20 * np.ones(2))
     self.ivp = lotkavolterra([0.0, 0.5], initrv)
     step = 0.1
     f = self.ivp.rhs
     t0, tmax = self.ivp.timespan
     y0 = self.ivp.initrv.mean
     self.solution = probsolve_ivp(f,
                                   t0,
                                   tmax,
                                   y0,
                                   step=step,
                                   adaptive=False)
Esempio n. 10
0
    def attempt_step(self, state, dt):
        t, x = state.t, state.rv.mean
        xnew = x + dt * state.ivp.f(t, x)

        # return nan as error estimate to ensure that it is not used
        new_state = diffeq.ODESolverState(
            ivp=state.ivp,
            rv=Constant(xnew),
            t=t + dt,
            error_estimate=np.nan,
            reference_state=xnew,
        )
        return new_state
Esempio n. 11
0
    def setUp(self):
        initrv = Constant(0.1 * np.ones(1))
        self.ivp = logistic([0.0, 1.5], initrv)
        step = 0.1
        f = self.ivp.rhs
        t0, tmax = self.ivp.timespan
        y0 = self.ivp.initrv.mean

        self.solution = probsolve_ivp(f,
                                      t0,
                                      tmax,
                                      y0,
                                      algo_order=3,
                                      step=step,
                                      adaptive=False)
Esempio n. 12
0
    def test_lorenz(self):
        """Test the Lorenz model ODE convenience function."""
        rv = Constant(np.array([1.0, 1.0, 1.0]))
        lg1 = ivp_examples.lorenz(self.tspan, rv)
        lg2 = ivp_examples.lorenz(
            self.tspan,
            rv,
            params=(
                10.0,
                28.0,
                8.0 / 3.0,
            ),
        )

        self.assertIsInstance(lg1, ivp.IVP)
        self.assertIsInstance(lg2, ivp.IVP)
Esempio n. 13
0
    def setUp(self):
        def rhs_(t, x):
            return -x

        def jac_(t, x):
            return -np.eye(len(x))

        def sol_(t):
            return np.exp(-t) * np.ones(TEST_NDIM)

        some_center = np.random.rand(TEST_NDIM)
        rv = Constant(some_center)
        self.mockivp = ivp.IVP((0.0, np.random.rand()),
                               rv,
                               rhs=rhs_,
                               jac=jac_,
                               sol=sol_)
Esempio n. 14
0
 def test_fitzhughnagumo_jacobian(self):
     rv = Constant(np.ones(2))
     lg1 = ivp_examples.fitzhughnagumo(self.tspan, rv)
     random_direction = 1 + 0.1 * np.random.rand(lg1.dimension)
     random_point = 1 + np.random.rand(lg1.dimension)
     fd_approx = (
         0.5
         * 1.0
         / self.dt
         * (
             lg1(0.1, random_point + self.dt * random_direction)
             - lg1(0.1, random_point - self.dt * random_direction)
         )
     )
     self.assertAllClose(
         lg1.jacobian(0.1, random_point) @ random_direction,
         fd_approx,
         rtol=self.rtol,
     )
Esempio n. 15
0
 def test_lorenz_jacobian(self):
     rv = Constant(np.array([1.0, 1.0, 1.0]))
     lg1 = ivp_examples.lorenz(self.tspan, rv)
     random_direction = 1 + 0.1 * np.random.rand(lg1.dimension)
     random_point = 1 + np.random.rand(lg1.dimension)
     fd_approx = (
         0.5
         * 1.0
         / self.dt
         * (
             lg1(0.1, random_point + self.dt * random_direction)
             - lg1(0.1, random_point - self.dt * random_direction)
         )
     )
     self.assertAllClose(
         lg1.jacobian(0.1, random_point) @ random_direction,
         fd_approx,
         rtol=self.rtol,
     )
Esempio n. 16
0
 def setUp(self):
     self.rv_list = _RandomVariableList([Constant(0.1), Constant(0.2)])
Esempio n. 17
0
 def setUp(self):
     y0 = Constant(0.3)
     ivp = logistic([0, 4], initrv=y0)
     euler_order = 1
     self.solver = MockODESolver(ivp, order=euler_order)
     self.step = 0.2
Esempio n. 18
0
    def test_lorenz_rhs(self):
        rv = Constant(np.ones(3))
        lg1 = ivp_examples.lorenz(self.tspan, rv)

        self.assertEqual(lg1.rhs(0.1, rv).shape, rv.shape)
Esempio n. 19
0
    def test_seir_rhs(self):
        rv = Constant(np.ones(4))
        lg1 = ivp_examples.seir(self.tspan, rv)

        self.assertEqual(lg1.rhs(0.1, rv).shape, rv.shape)
Esempio n. 20
0
    def test_lotkavolterra_rhs(self):
        rv = Constant(np.ones(2))
        lg1 = ivp_examples.lotkavolterra(self.tspan, rv)

        self.assertEqual(lg1.rhs(0.1, rv).shape, rv.shape)
Esempio n. 21
0
    def test_fitzhughnagumo_rhs(self):
        rv = Constant(np.ones(2))
        lg1 = ivp_examples.fitzhughnagumo(self.tspan, rv)

        self.assertEqual(lg1.rhs(0.1, rv).shape, rv.shape)
Esempio n. 22
0
    def test_logistic_rhs(self):
        rv = Constant(0.1)
        lg1 = ivp_examples.logistic(self.tspan, rv)

        self.assertEqual(lg1.rhs(0.1, rv).shape, rv.shape)
Esempio n. 23
0
def load_lotkavolterra():
    """Load LV system as a basic IVP."""
    initrv = Constant(np.array([20, 20]))
    return lotkavolterra(timespan=[0, 0.55],
                         initrv=initrv,
                         params=(0.5, 0.05, 0.5, 0.05))
Esempio n. 24
0
def ivp():
    initrv = Constant(20.0 * np.ones(2))
    return ode.lotkavolterra([0.0, 0.25], initrv)
Esempio n. 25
0
def ivp():
    initrv = Constant(0.1 * np.ones(1))
    return ode.logistic([0.0, 1.5], initrv)