def update(num_growth_pix): # print(f"Num_growth_pix: {num_growth_pix}") nrows = IGrid.nrows ncols = IGrid.ncols total_pixels = nrows * ncols road_pixel_count = IGrid.get_road_pixel_count( Processing.get_current_year()) excluded_pixel_count = IGrid.get_excld_count() # Compute this year stats Stats.compute_cur_year_stats() # Set num growth pixels Stats.set_num_growth_pixels(num_growth_pix) # Calibrate growth rate Stats.cal_growth_rate() # Calibrate Percent Urban Stats.cal_percent_urban(total_pixels, road_pixel_count, excluded_pixel_count) output_dir = Scenario.get_scen_value('output_dir') cur_run = Processing.get_current_run() cur_year = Processing.get_current_year() if IGrid.test_for_urban_year(Processing.get_current_year()): Stats.cal_leesalee() filename = f"{output_dir}grow_{cur_run}_{cur_year}.log" Stats.save(filename) if Processing.get_processing_type() == Globals.mode_enum['predict']: filename = f"{output_dir}grow_{cur_run}_{cur_year}.log" Stats.save(filename)
def __init__(self, file_str, window_length, n_average): self.file_folder = "/data/" self.file_str = file_str self.window_length = window_length self.n_average = n_average self.bud = Processing(self.file_folder + self.file_str, verbose=True) self.n_buffer = 26214400
def analyze(fmatch): output_dir = Scenario.get_scen_value('output_dir') run = Processing.get_current_run() write_avg_file = Scenario.get_scen_value('write_avg_file') avg_filename = f'{output_dir}avg.log' write_std_dev_file = Scenario.get_scen_value('write_std_dev_file') std_filename = f'{output_dir}std_dev.log' control_filename = f'{output_dir}control_stats.log' if write_avg_file: if not os.path.isfile(avg_filename): Stats.create_stats_val_file(avg_filename) if write_std_dev_file: if not os.path.isfile(std_filename): Stats.create_stats_val_file(std_filename) if Processing.get_processing_type() != Globals.mode_enum['predict']: if not os.path.isfile(control_filename): Stats.create_control_file(control_filename) # start at i = 1; i = 0 is the initial seed # I think I need to put a dummy stats_val to represent the initial seed Stats.average.append(StatsVal()) for i in range(1, IGrid.igrid.get_num_urban()): year = IGrid.igrid.get_urban_year(i) Stats.calculate_averages(i) Stats.process_grow_log(run, year) if write_avg_file: Stats.write_stats_val_line(avg_filename, run, year, Stats.average[i], i) if write_std_dev_file: Stats.write_stats_val_line(std_filename, run, year, Stats.std_dev[i], i) Stats.do_regressions() Stats.do_aggregate(fmatch) Stats.write_control_stats(control_filename) if Processing.get_processing_type() == Globals.mode_enum['predict']: start = int(Scenario.get_scen_value('prediction_start_date')) stop = Processing.get_stop_year() for year in range(start + 1, stop + 1): Stats.clear_stats() Stats.process_grow_log(run, year) if write_avg_file: Stats.write_stats_val_line(avg_filename, run, year, Stats.average[0], 0) if write_std_dev_file: Stats.write_stats_val_line(std_filename, run, year, Stats.std_dev[0], 0) Stats.clear_stats()
def main(): try: ui = Interface() file_path, config_file = ui.file_selector() p = Processing(file_path, config_file) result = p.analysis() name = p.output(result) ui.finish(name) except: sys.exit(0)
def monte_carlo(cumulate, land1): log_it = Scenario.get_scen_value("logging") z = PGrid.get_z() total_pixels = IGrid.get_total_pixels() num_monte_carlo = int( Scenario.get_scen_value("monte_carlo_iterations")) for imc in range(num_monte_carlo): Processing.set_current_monte(imc) '''print("--------Saved-------") print(Coeff.get_saved_diffusion()) print(Coeff.get_saved_spread()) print(Coeff.get_saved_breed()) print(Coeff.get_saved_slope_resistance()) print(Coeff.get_saved_road_gravity()) print("--------------------")''' # Reset the Parameters Coeff.set_current_diffusion(Coeff.get_saved_diffusion()) Coeff.set_current_spread(Coeff.get_saved_spread()) Coeff.set_current_breed(Coeff.get_saved_breed()) Coeff.set_current_slope_resistance( Coeff.get_saved_slope_resistance()) Coeff.set_current_road_gravity(Coeff.get_saved_road_gravity()) if log_it and Scenario.get_scen_value("log_initial_coefficients"): Coeff.log_current() # Run Simulation Stats.init_urbanization_attempts() TimerUtility.start_timer('grw_growth') Grow.grow(z, land1) TimerUtility.stop_timer('grw_growth') if log_it and Scenario.get_scen_value("log_urbanization_attempts"): Stats.log_urbanization_attempts() # Update Cumulate Grid for i in range(total_pixels): if z.gridData[i] > 0: cumulate.gridData[i] += 1 # Update Annual Land Class Probabilities if Processing.get_processing_type( ) == Globals.mode_enum["predict"]: LandClass.update_annual_prob(land1.gridData, total_pixels) # Normalize Cumulative Urban Image for i in range(total_pixels): cumulate.gridData[i] = (100 * cumulate.gridData[i]) / num_monte_carlo
def completion_status(): mc_iters = int(Scenario.get_scen_value('monte_carlo_iterations')) cur_mc = int(Processing.get_current_monte()) total_runs = int(Processing.get_total_runs()) total_mc = (mc_iters * total_runs) / int(Globals.npes) total_mc_executed = mc_iters * Processing.get_num_runs_exec_this_cpu( ) + cur_mc complete = min(total_mc_executed / total_mc, 1.0) Logger.log( f"Run= {Processing.get_current_run()} of {total_runs} MC= {cur_mc} of {mc_iters}" )
class Crawler: def __init__(self, start_url): self.start_url = start_url h = urlparse(start_url) self.host = h[1] self.http = urllib3.PoolManager() self.processing = Processing() def neighbor(self,url): try: response = self.http.request("GET",url) self.html = response.data soup = BeautifulSoup(self.html,"lxml") return soup except: print("could not open url %s " %url) def test(self,url): response = self.http.request("GET",url) html = response.data self.processing.data_processing(html) def bfs(self): url = [] visited = [] url.append(self.start_url) while len(url) > 0: link = url.pop() print(len(url)) uri = urljoin(self.start_url, link) parse_url = urlparse(uri) #f = open(self.host+"\n", 'a+') try: for tag in self.neighbor(link).findAll('a',href=True): tag = urljoin(self.start_url, tag['href']) tag = tag.split('#')[0] junk, ext = os.path.splitext(tag) if tag not in visited and ext != '.jpg' and ext != '.JPG' and ext != '.pdf': visited.append(tag) if parse_url[1] == str(self.host): url.append(tag) self.processing.data_processing(self.html) #f.writelines(tag+"\n") print(tag) except: pass
def main(): process = Processing() process.read_csv() process.load_data() process.apply_learning_algo(0.01)
def grow_landuse(land1, num_growth_pix): nrows = IGrid.nrows ncols = IGrid.ncols ticktock = Processing.get_current_year() landuse0_year = IGrid.igrid.get_landuse_year(0) landuse1_year = IGrid.igrid.get_landuse_year(1) urban_code = LandClass.get_urban_code() new_indices = LandClass.get_new_indices() landuse_classes = LandClass.get_landclasses() class_indices = LandClass.get_reduced_classes() background = IGrid.igrid.get_background() slope = IGrid.igrid.get_slope() deltatron = PGrid.get_deltatron() z = PGrid.get_z() land2 = PGrid.get_land2() class_slope = Transition.get_class_slope() ftransition = Transition.get_ftransition() if ticktock >= landuse0_year: # Place the New Urban Simulation into the Land Use Image Utilities.condition_gt_gif(z.gridData, 0, land1.gridData, urban_code) Deltatron.deltatron(new_indices, landuse_classes, class_indices, deltatron, land1, land2, slope, num_growth_pix, class_slope, ftransition) # Switch the old to the new for i in range(len(land2.gridData)): land1.gridData[i] = land2.gridData[i] if Processing.get_processing_type() == Globals.mode_enum['predict'] or \ (Processing.get_processing_type() == Globals.mode_enum['test'] and Processing.get_current_monte() == Processing.get_last_monte()): #Write land1 to file if IGrid.using_gif: filename = f"{Scenario.get_scen_value('output_dir')}{IGrid.igrid.location}_land_n_urban" \ f".{Processing.get_current_year()}.gif" else: filename = f"{Scenario.get_scen_value('output_dir')}{IGrid.igrid.location}_land_n_urban" \ f".{Processing.get_current_year()}.tif" IGrid.echo_meta( f"{Scenario.get_scen_value('output_dir')}{IGrid.igrid.location}_land_n_urban." f"{Processing.get_current_year()}.tfw", "landuse") date = f"{Processing.get_current_year()}" ImageIO.write_gif(land1, Color.get_landuse_table(), filename, date, nrows, ncols) # Compute final match statistics for landuse Utilities.condition_gt_gif(z.gridData, 0, land1.gridData, urban_code)
def agent_query(self, shipment): current_process().daemon = False processing_object = Processing() self.q = processing_object.create_queue() response = {} p = processing_object.new_process( self._child_process, [processing_object, shipment] ) response = [] for route in shipment.routes(): queue_response = self.q.get(timeout=4) shipment.manifest[route] = queue_response p.join() return shipment
def post_image_rev_video(): """ Inverse the intensities of a grayscale image. Only works for grayscale images POSTed request should contain: email: ID of the current user. Returns: dict: image with inverted intensities. """ content = request.get_json() user_image_id = db.get_current_image_id(content["email"]) current_image = db.find_image(user_image_id, content["email"]) new_image = _link_new_image(current_image) try: image_data, new_image["processing_time"] = \ Processing(b64str_to_numpy( current_image.image_data)).reverse_video() except ValueError: return error_handler(400, "must be grayscale", "ValueError") new_image = _populate_image_meta(new_image, image_data) # maybe something else new_image["image_data"] = numpy_to_b64str(image_data, format=new_image["format"]) new_image["image_data"], _ = _get_b64_format(new_image["image_data"]) new_image["histogram"] = _get_b64_histogram(image_data, is_gray=True) new_image["process"] = "reverse_video" db.update_user_process(content["email"], new_image["process"]) return jsonify(new_image)
def post_image_blur(): """ Takes CURRENT image and performs image blur on whole image. POSTed request should contain: email: ID of the current user. Returns: object: blurred image. """ content = request.get_json() user_image_id = db.get_current_image_id(content["email"]) current_image = db.find_image(user_image_id, content["email"]) new_image = _link_new_image(current_image) image_data, new_image["processing_time"] = \ Processing(b64str_to_numpy(current_image.image_data)).blur() new_image = _populate_image_meta(new_image, image_data) new_image["image_data"] = numpy_to_b64str(image_data, format=new_image["format"]) new_image["image_data"], _ = _get_b64_format(new_image["image_data"]) new_image["histogram"] = _get_b64_histogram(image_data) new_image["process"] = "blur" db.update_user_process(content["email"], new_image["process"]) return jsonify(new_image)
def write_z_prob_grid(z, name): # copy background int z_prob_ptr and remap background pixels # which collide with the seed, prob colors, and date nrows = IGrid.nrows ncols = IGrid.ncols total_pix = nrows * ncols background = IGrid.igrid.get_background_grid() prob_color_cnt = len(Scenario.get_scen_value('probability_color')) lower_bounds = [UGMDefines.SEED_COLOR_INDEX, UGMDefines.DATE_COLOR_INDEX] upper_bounds = [UGMDefines.SEED_COLOR_INDEX + prob_color_cnt, UGMDefines.DATE_COLOR_INDEX] indices = [UGMDefines.SEED_COLOR_INDEX + prob_color_cnt + 1, UGMDefines.DATE_COLOR_INDEX - 1] z_prob = Utilities.map_grid_to_index(background, lower_bounds, upper_bounds, indices, total_pix) if Processing.get_processing_type() == Globals.mode_enum['predict']: # Map z_ptr pixels into desired prob indices and save in overlay prob_list = Scenario.get_scen_value('probability_color') lower_bounds = [] upper_bounds = [] indices = [] for i, prob in enumerate(prob_list): lower_bounds.append(prob.lower_bound) upper_bounds.append(prob.upper_bound) indices.append(i + 2) indices[0] = 0 overlay = Utilities.map_grid_to_index(z, lower_bounds, upper_bounds, indices, total_pix) # Overlay overlay grid onto the z_prob grid z_prob = Utilities.overlay(z_prob, overlay) # Overlay urban_seed into the z_prob grid z_prob = Utilities.overlay_seed(z_prob, total_pix) else: # TESTING # Map z grid pixels into desired seed_color_index and save in overlay pt lower_bounds = [1] upper_bounds = [100] indices = [UGMDefines.SEED_COLOR_INDEX] overlay = Utilities.map_grid_to_index(z.gridData, lower_bounds, upper_bounds, indices, total_pix) # Overlay overlay grid onto the z_prob grid z_prob = Utilities.overlay(z_prob, overlay) # The file writer needs to take in a Grid, so we're going to wrap our z_prob list in a grid z_prob_grid = IGrid.wrap_list(z_prob) if IGrid.using_gif: filename = f"{Scenario.get_scen_value('output_dir')}{IGrid.igrid.get_location()}" \ f"{name}{Processing.get_current_year()}.gif" else: filename = f"{Scenario.get_scen_value('output_dir')}{IGrid.igrid.get_location()}" \ f"{name}{Processing.get_current_year()}.tif" IGrid.echo_meta(f"{Scenario.get_scen_value('output_dir')}" f"{IGrid.igrid.get_location()}{name}{Processing.get_current_year()}.tfw", "urban") date = f"{Processing.get_current_year()}" ImageIO.write_gif(z_prob_grid, Color.get_probability_table(), filename, date, IGrid.nrows, IGrid.ncols)
def execute_algorithm(algorithm_id, feedback=None, **parameters): algorithm = QgsApplication.processingRegistry().createAlgorithmById( algorithm_id) if feedback is None: feedback = QgsProcessingFeedback() context = createContext(feedback) parameters_ok, msg = algorithm.checkParameterValues(parameters, context) if not parameters_ok: raise QgsProcessingException(msg) if not algorithm.validateInputCrs(parameters, context): feedback.reportError( Processing. tr('Warning: Not all input layers use the same CRS.\nThis can cause unexpected results.' )) results, execution_ok = algorithm.run(parameters, context, feedback) if execution_ok: return results else: msg = Processing.tr("There were errors executing the algorithm.") raise QgsProcessingException(msg)
def post_hist_eq(): """ Takes CURRENT image and performs histogram eq on image. POSTed request should contain: email: ID of the current user. Returns: object: New hist eq'd image. """ # should take the current image with all info content = request.get_json() # grab the user's current image. user_image_id = db.get_current_image_id(content["email"]) current_image = db.find_image(user_image_id, content["email"]) new_image = _link_new_image(current_image) image_data, new_image["processing_time"] = \ Processing(b64str_to_numpy(current_image.image_data)).hist_eq() new_image = _populate_image_meta(new_image, image_data) new_image["image_data"] = numpy_to_b64str(image_data, format=new_image["format"]) new_image["image_data"], _ = _get_b64_format(new_image["image_data"]) new_image["histogram"] = _get_b64_histogram(image_data) new_image["process"] = "hist_eq" db.update_user_process(content["email"], new_image["process"]) return jsonify(new_image)
def post_image_contrast_stretch(): """ Takes CURRENT image and performs contrast stretch on image. POSTed request should contain: email: ID of the current user. Returns: object: New contrast stretched image. """ content = request.get_json() p_low = request.args.get("l", 10) p_high = request.args.get("h", 90) percentile = (p_low, p_high) user_image_id = db.get_current_image_id(content["email"]) current_image = db.find_image(user_image_id, content["email"]) new_image = _link_new_image(current_image) image_data, new_image["processing_time"] = \ Processing(b64str_to_numpy(current_image.image_data) ).contrast_stretch(percentile) new_image = _populate_image_meta(new_image, image_data) new_image["image_data"] = numpy_to_b64str(image_data, format=new_image["format"]) new_image["image_data"], _ = _get_b64_format(new_image["image_data"]) new_image["histogram"] = _get_b64_histogram(image_data) new_image["process"] = "contrast_stretch" db.update_user_process(content["email"], new_image["process"]) return jsonify(new_image)
def set_processing_data(self, sim_data, item_type, item_configuration): """ get processing (parallelization) data from database and store in sim_data :param sim_data: (class SimulationData) :param item_type: (string) :param item_configuration: (string) :return: """ processing = Processing() processing.number_cpus = self.__gateToDatabase.query_column_entry( 'types', self.__gateToDatabase.query_id_for_name('types', item_type), 'number_cpus') processing.mode = self.__gateToDatabase.query_column_entry( 'configurations', self.__gateToDatabase.query_id_for_name( 'configurations', item_configuration), 'processing') sim_data.processing = processing
def calculate_stand_dev(idx): temp = StatsVal() total_mc = int(Scenario.get_scen_value('monte_carlo_iterations')) if idx == 0 and Processing.get_processing_type( ) != Globals.mode_enum['predict']: raise ValueError() temp.calculate_sd(total_mc, Stats.record, Stats.average[idx]) Stats.std_dev.append(temp)
def load(self, filename) -> None: """ Loads an image containing a mathematical expression and extracts individual symbols from it @param filename: Path to a file """ self.image = cv2.imread(filename) self.segments = Processing.extract_segments(self.image, draw_rectangles=True)
def show_image(image, title='', save_path=None): plt.figure() image = image.cpu().clone().squeeze(0) image = Processing.postprocessor(image) plt.imshow(image) plt.title(title) if save_path is not None: plt.savefig(save_path) plt.pause(0.001)
def save(filename): Stats.record.run = Processing.get_current_run() Stats.record.monte_carlo = Processing.get_current_monte() Stats.record.year = Processing.get_current_year() index = 0 if Processing.get_processing_type() != Globals.mode_enum['predict']: index = IGrid.igrid.urban_yr_to_idx(Stats.record.year) Stats.update_running_total(index) # Now we are writing the record to file for now... if Stats.record.monte_carlo == 0: # Create file with open(filename, 'wb') as output: # Overwrites any existing file. _pickle.dump(Stats.record, output, -1) else: with open(filename, 'ab') as output: _pickle.dump(Stats.record, output, -1)
def process_grow_log(run, year): output_dir = Scenario.get_scen_value('output_dir') filename = f'{output_dir}grow_{run}_{year}.log' mc_iters = int(Scenario.get_scen_value('monte_carlo_iterations')) mc_count = 0 grow_records = [] # if Processing.get_processing_type() != Globals.mode_enum['predict']: with (open(filename, "rb")) as openfile: while True: try: grow_records.append(_pickle.load(openfile)) except EOFError: break """print(f"****************Year {year}***********************") for record in grow_records: print(record) print("***************************************")""" if len(grow_records) > int( Scenario.get_scen_value('monte_carlo_iterations')): raise AssertionError( "Num Records is larger than Monte Carlo iters") if Processing.get_processing_type() == Globals.mode_enum['predict']: for record in grow_records: Stats.record = record Stats.update_running_total(0) Stats.calculate_averages(0) for record in grow_records: Stats.record = record if mc_count >= mc_iters: Logger.log("mc_count >= scen_GetMonteCarloIterations ()") sys.exit(1) if Processing.get_processing_type( ) != Globals.mode_enum['predict']: index = IGrid.igrid.urban_yr_to_idx(Stats.record.year) Stats.calculate_stand_dev(index) else: Stats.calculate_stand_dev(0) mc_count += 1 os.remove(filename)
def load(self) -> None: """ Loads fonts from data/ folder and creates data and labels used for training the network """ for font in range(self.fonts): image = cv2.imread('data/font' + str(font) + '.png') self.data.extend(Processing.extract_segments(image)) self.labels = [[0] * len(Constants.symbols) for _ in range(len(Constants.symbols))] for i in range(len(self.labels)): self.labels[i][i] = 1 self.labels *= self.fonts
class Data(): def __init__(self): self.processing = Processing() self.file = pd.read_csv('file.csv') self.header = self.file.columns.tolist() self.option_list = [] self.list = [] def initialize(self): index = len(self.header) print("Choose two options for statistical evaluation: \n") for i in range(0, index): print(i, " = ", self.header[i]) self.selections(index) def selections(self, index): try: choice = int(input()) if choice >= index: print("Choose an element from the list ...") self.selections(index) self.list.append(choice) if len(self.list) < 2: self.selections(index) else: self.controller(self.list) except ValueError: print("Select one of the above options (numeric value): ") self.selections(index) def controller(self, list): for x in list: self.option_list.append(self.header[x]) index1 = self.file[self.option_list[0]] index2 = self.file[self.option_list[1]] self.processing.data_processing(index1, index2, self.option_list)
def main(): sparky = Processing() logging.basicConfig(level=logging.WARN) global Logger # These function calls has to be done the first time running the program. # They are used to write twitter texts to the file "irmaHurricaneTweets.csv Logger = logging.getLogger('get_tweets_by_id') """ ****************************************** TWEET COLLECTION; IF(!) you want to collect your own dataset instead of the sample. The four lines below this comment must be uncommented(remove #) and run. Remember to comment back in order to not overwrite the file again when running functionality on dataset """ #fhand = open("irmaHurricaneTweets.csv", "w+") #fhand.truncate() #fhand.close() #get_tweets_bulk(api=authentication(), file="irma_tweet_ids.txt", outputcsvfile="irmaHurircaneTweets.csv") td.dialogue(sparky) sparky.stopspark()
def __init__(self,root): self.process = Processing() self.root = root self.buttonFrame = tk.Frame(root) self.container = tk.Frame(root) self.buttonFrame.pack(side = 'top',fill = 'x',expand = False) self.container.pack(side = 'top',fill = 'both',expand = True) self.login_frame = tk.Frame(root) self.select_sub_frame = tk.Frame(root) self.attendence_frame = tk.Frame(root) self.graph_frame = tk.Frame(root) self.login_frame.place(in_=self.container, x=0, y=0, relwidth=1, relheight=1) self.select_sub_frame.place(in_=self.container, x=0, y=0, relwidth=1, relheight=1) self.attendence_frame.place(in_=self.container, x=0, y=0, relwidth=1, relheight=1) self.graph_frame.place(in_=self.container, x=0, y=0, relwidth=1, relheight=1) self.roll_numbers_frame = tk.Frame(self.attendence_frame) self.subbmit_button_frame = tk.Frame(self.attendence_frame) self.roll_numbers_frame.pack(side="top", fill="both", expand=True) self.subbmit_button_frame.pack(side="top") self.fill_button_frame()
def process_tweets(self): """ Process all tweets collected """ for data in self.datas: t = { 'id': data['id'], 'user': data['user']['screen_name'], 'original': data['text'], 'processed': Processing(data['text']).execute(), 'evaluation': 0 } self.tweets.append(t) return self.tweets
def _get_b64_histogram(image_data, is_gray=False): """ Gets a base 64 representation of a histogram for an image Args: image_data (np.ndarray): Image. Returns: str: Base 64 representation of the histogram for image. """ histogram = Processing(image_data, is_color=False).histogram(image_data, is_gray=is_gray) histogram = histogram[:, :, :3] return numpy_to_b64str(histogram)
def grow_non_landuse(z): num_monte = int(Scenario.get_scen_value('monte_carlo_iterations')) cumulate_monte_carlo = Grid() filename = f"{Scenario.get_scen_value('output_dir')}cumulate_monte_carlo.year_{Processing.get_current_year()}" if Processing.get_processing_type() != Globals.mode_enum['calibrate']: if Processing.get_current_monte() == 0: # Zero out accumulation grid cumulate_monte_carlo.init_grid_data(IGrid.total_pixels) else: Input.read_file_to_grid(filename, cumulate_monte_carlo) # Accumulate Z over monte carlos for i in range(IGrid.total_pixels): if z[i] > 0: cumulate_monte_carlo.gridData[i] += 1 if Processing.get_current_monte() == num_monte - 1: if Processing.get_processing_type( ) == Globals.mode_enum['test']: Utilities.condition_gt_gif(z, 0, cumulate_monte_carlo.gridData, 100) else: # Normalize Accumulated grid for i in range(IGrid.total_pixels): cumulate_monte_carlo.gridData[ i] = 100 * cumulate_monte_carlo.gridData[ i] / num_monte Utilities.write_z_prob_grid(cumulate_monte_carlo, "_urban_") if Processing.get_current_monte() != 0: os.remove(filename) else: # Dump accumulated grid to disk Output.write_grid_to_file(filename, cumulate_monte_carlo)
def landuse_init(deltatron, land1): total_pixels = IGrid.nrows * IGrid.ncols # Initialize Deltatron Grid to Zero for pixel in deltatron: pixel = 0 if Processing.get_processing_type() == Globals.mode_enum['predict']: landuse = IGrid.igrid.get_landuse_igrid(1) for i in range(total_pixels): land1[i] = landuse[i] else: landuse = IGrid.igrid.get_landuse_igrid(0) for i in range(total_pixels): land1[i] = landuse[i]
def start(self): # Script statup steps logger.info('PolyEngine v1.0') config = Config('config.ini') project_name = config.check_setting('PolyEngine', 'Name') logger.info('Starting project {}', project_name) message = config.check_setting('PolyEngine', 'Message') logger.info(message) # Source directory of project based on config file source_directory = config.check_setting('Compile', 'SourceDirectory') # Create the temporary code modification workspace workspace = Workspace(source_directory) workspace.create_workspace() # Process the files for f in workspace.source_files: if f is not None: processor = Processing(f) processor.process() for f in workspace.header_files: if f is not None: processor = Processing(f) processor.process() # Initialize the compiler once information has been loaded output_file = config.check_setting('Compile', 'Output') commands = config.check_setting('Compile', 'Commands') compiler_option = config.check_setting('Compile', 'Compiler') if compiler_option == 'gcc' or compiler_option == 'g++': compiler = Compile(compiler_option, workspace.source_files, commands, output_file) compiler.compile() else: logger.error('Invalid compiler option selected.') exit('Invalid compiler.') # Cleanup workspace and exit print() Cleanup.clean_exit(workspace.work_path)
def set_base_stats(): Stats.record = Record() urban_num = IGrid.igrid.get_num_urban() slope = IGrid.igrid.get_slope().gridData for i in range(urban_num): urban = IGrid.igrid.get_urban_idx(i).gridData stats_info = StatsInfo() Stats.compute_stats(urban, slope, stats_info) road_pixel_count = IGrid.get_road_pixel_count( Processing.get_current_year()) excluded_pixel_count = IGrid.get_excld_count() percent_urban = 100.0 * 100.0 * (stats_info.pop + road_pixel_count) / \ (IGrid.nrows * IGrid.ncols - road_pixel_count - excluded_pixel_count) stats_info.percent_urban = percent_urban Stats.actual.append(stats_info)
def main(): preProcessing = PreProcessing("mnist_train.csv") #preProcessing.preProcessData() # number or hidden units processing = Processing(10) processing.load_data("mnist_train_scaled.csv", "mnist_train_targetClass.csv") processing.processing() for arg in sys.argv[1:]: print(arg)
def process_images(): for img in images: img = Image(img, 1) processing = Processing(img) processing.get_domino_points()
def __init__(self, start_url): self.start_url = start_url h = urlparse(start_url) self.host = h[1] self.http = urllib3.PoolManager() self.processing = Processing()