Esempio n. 1
0
 def test_coalesce_decoalesce_with_iter(self):
     for rows in vis_timeslice_iter(self.blockvis):
         visslice = create_visibility_from_rows(self.blockvis, rows)
         cvisslice = convert_blockvisibility_to_visibility(visslice)
         assert numpy.min(cvisslice.frequency) == numpy.min(self.frequency)
         assert numpy.min(cvisslice.frequency) > 0.0
         dvisslice = decoalesce_visibility(cvisslice)
         assert dvisslice.nvis == visslice.nvis
Esempio n. 2
0
 def test_vis_timeslice_iterator(self):
     self.actualSetUp()
     nchunks = vis_timeslices(self.vis, timeslice='auto')
     log.debug('Found %d chunks' % (nchunks))
     assert nchunks > 1
     total_rows = 0
     for chunk, rows in enumerate(vis_timeslice_iter(self.vis, nchunks)):
         visslice = create_visibility_from_rows(self.vis, rows)
         total_rows += visslice.nvis
         assert visslice.vis[0].real == visslice.time[0]
         assert len(rows)
         assert numpy.sum(rows) < self.vis.nvis
     assert total_rows == self.vis.nvis, "Total rows iterated %d, Original rows %d" % (
         total_rows, self.vis.nvis)
Esempio n. 3
0
def create_gaintable_from_screen(vis,
                                 sc,
                                 screen,
                                 height=3e5,
                                 vis_slices=None,
                                 scale=1.0,
                                 **kwargs):
    """ Create gaintables from a screen calculated using ARatmospy

    :param vis:
    :param sc: Sky components for which pierce points are needed
    :param screen:
    :param height: Height (in m) of screen above telescope e.g. 3e5
    :param scale: Multiply the screen by this factor
    :return:
    """
    assert isinstance(vis, BlockVisibility)

    station_locations = vis.configuration.xyz

    nant = station_locations.shape[0]
    t2r = numpy.pi / 43200.0
    gaintables = [
        create_gaintable_from_blockvisibility(vis, **kwargs) for i in sc
    ]

    # The time in the Visibility is hour angle in seconds!
    for iha, rows in enumerate(vis_timeslice_iter(vis, vis_slices=vis_slices)):
        v = create_visibility_from_rows(vis, rows)
        ha = numpy.average(v.time)
        number_bad = 0
        number_good = 0

        for icomp, comp in enumerate(sc):
            pp = find_pierce_points(station_locations,
                                    (comp.direction.ra.rad + t2r * ha) * u.rad,
                                    comp.direction.dec,
                                    height=height,
                                    phasecentre=vis.phasecentre)
            scr = numpy.zeros([nant])
            for ant in range(nant):
                pp0 = pp[ant][0:2]
                worldloc = [pp0[0], pp0[1], ha, 1e8]
                try:
                    pixloc = screen.wcs.wcs_world2pix([worldloc],
                                                      0)[0].astype('int')
                    scr[ant] = scale * screen.data[pixloc[3], pixloc[2],
                                                   pixloc[1], pixloc[0]]
                    number_good += 1
                except:
                    number_bad += 1
                    scr[ant] = 0.0

            gaintables[icomp].gain[iha, :, :, :] = numpy.exp(
                1j * scr[:, numpy.newaxis, numpy.newaxis, numpy.newaxis])
            gaintables[icomp].phasecentre = comp.direction

        if number_bad > 0:
            log.warning(
                "create_gaintable_from_screen: %d pierce points are inside the screen image"
                % (number_good))
            log.warning(
                "create_gaintable_from_screen: %d pierce points are outside the screen image"
                % (number_bad))

    return gaintables
Esempio n. 4
0
 def test_vis_timeslice_iterator_single(self):
     self.actualSetUp(times=numpy.zeros([1]))
     nchunks = vis_timeslices(self.vis, timeslice='auto')
     log.debug('Found %d chunks' % (nchunks))
     for chunk, rows in enumerate(vis_timeslice_iter(self.vis)):
         assert len(rows)
def simulate_gaintable_from_voltage_patterns(vis,
                                             sc,
                                             vp_list,
                                             vp_coeffs,
                                             vis_slices=None,
                                             order=3,
                                             use_radec=False,
                                             **kwargs):
    """ Create gaintables for a set of zernikes

    :param vis:
    :param sc: Sky components for which pierce points are needed
    :param vp: List of Voltage patterns in AZELGEO frame
    :param vp_coeffs: Fractional contribution [nants, nvp]
    :param order: order of spline (default is 3)
    :return:
    """

    ntimes, nant = vis.vis.shape[0:2]
    vp_coeffs = numpy.array(vp_coeffs)
    gaintables = [
        create_gaintable_from_blockvisibility(vis, **kwargs) for i in sc
    ]

    if not use_radec:
        assert isinstance(vis, BlockVisibility)
        assert vis.configuration.mount[
            0] == 'azel', "Mount %s not supported yet" % vis.configuration.mount[
                0]

        # The time in the Visibility is hour angle in seconds!
        number_bad = 0
        number_good = 0

        # Cache the splines, one per voltage pattern
        real_splines = list()
        imag_splines = list()
        for ivp, vp in enumerate(vp_list):
            assert vp.wcs.wcs.ctype[0] == 'AZELGEO long', vp.wcs.wcs.ctype[0]
            assert vp.wcs.wcs.ctype[1] == 'AZELGEO lati', vp.wcs.wcs.ctype[1]

            nchan, npol, ny, nx = vp.data.shape
            real_splines.append(
                RectBivariateSpline(range(ny),
                                    range(nx),
                                    vp.data[0, 0, ...].real,
                                    kx=order,
                                    ky=order))
            imag_splines.append(
                RectBivariateSpline(range(ny),
                                    range(nx),
                                    vp.data[0, 0, ...].imag,
                                    kx=order,
                                    ky=order))

        latitude = vis.configuration.location.lat.rad

        r2d = 180.0 / numpy.pi
        s2r = numpy.pi / 43200.0
        # For each hourangle, we need to calculate the location of a component
        # in AZELGEO. With that we can then look up the relevant gain from the
        # voltage pattern
        for iha, rows in enumerate(
                vis_timeslice_iter(vis, vis_slices=vis_slices)):
            v = create_visibility_from_rows(vis, rows)
            ha = numpy.average(v.time)
            har = s2r * ha

            # Calculate the az el for this hourangle and the phasecentre declination
            azimuth_centre, elevation_centre = hadec_to_azel(
                har, vis.phasecentre.dec.rad, latitude)

            for icomp, comp in enumerate(sc):
                antgain = numpy.zeros([nant], dtype='complex')
                # Calculate the location of the component in AZELGEO, then add the pointing offset
                # for each antenna
                hacomp = comp.direction.ra.rad - vis.phasecentre.ra.rad + har
                deccomp = comp.direction.dec.rad
                azimuth_comp, elevation_comp = hadec_to_azel(
                    hacomp, deccomp, latitude)

                for ant in range(nant):
                    for ivp, vp in enumerate(vp_list):
                        nchan, npol, ny, nx = vp.data.shape
                        wcs_azel = vp.wcs.deepcopy()

                        az_comp = azimuth_centre * r2d
                        el_comp = elevation_centre * r2d

                        # We use WCS sensible coordinate handling by labelling the axes misleadingly
                        wcs_azel.wcs.crval[0] = az_comp
                        wcs_azel.wcs.crval[1] = el_comp
                        wcs_azel.wcs.ctype[0] = 'RA---SIN'
                        wcs_azel.wcs.ctype[1] = 'DEC--SIN'

                        worldloc = [
                            azimuth_comp * r2d, elevation_comp * r2d,
                            vp.wcs.wcs.crval[2], vp.wcs.wcs.crval[3]
                        ]
                        try:
                            pixloc = wcs_azel.sub(2).wcs_world2pix(
                                [worldloc[:2]], 1)[0]
                            assert pixloc[0] > 2
                            assert pixloc[0] < nx - 3
                            assert pixloc[1] > 2
                            assert pixloc[1] < ny - 3
                            gain = real_splines[ivp].ev(pixloc[1], pixloc[0]) \
                                   + 1j * imag_splines[ivp](pixloc[1], pixloc[0])
                            antgain[ant] += vp_coeffs[ant, ivp] * gain
                            number_good += 1
                        except:
                            number_bad += 1
                            antgain[ant] = 0.0

                    antgain[ant] = 1.0 / antgain[ant]

                gaintables[icomp].gain[iha, :, :, :] = antgain[:,
                                                               numpy.newaxis,
                                                               numpy.newaxis,
                                                               numpy.newaxis]
                gaintables[icomp].phasecentre = comp.direction
    else:
        assert isinstance(vis, BlockVisibility)
        number_bad = 0
        number_good = 0

        # Cache the splines, one per voltage pattern
        real_splines = list()
        imag_splines = list()
        for ivp, vp in enumerate(vp_list):

            nchan, npol, ny, nx = vp.data.shape
            real_splines.append(
                RectBivariateSpline(range(ny),
                                    range(nx),
                                    vp.data[0, 0, ...].real,
                                    kx=order,
                                    ky=order))
            imag_splines.append(
                RectBivariateSpline(range(ny),
                                    range(nx),
                                    vp.data[0, 0, ...].imag,
                                    kx=order,
                                    ky=order))

        for iha, rows in enumerate(
                vis_timeslice_iter(vis, vis_slices=vis_slices)):

            # The time in the Visibility is hour angle in seconds!
            r2d = 180.0 / numpy.pi
            # For each hourangle, we need to calculate the location of a component
            # in AZELGEO. With that we can then look up the relevant gain from the
            # voltage pattern
            v = create_visibility_from_rows(vis, rows)
            ha = numpy.average(v.time)

            for icomp, comp in enumerate(sc):
                antgain = numpy.zeros([nant], dtype='complex')
                antwt = numpy.zeros([nant])
                ra_comp = comp.direction.ra.rad
                dec_comp = comp.direction.dec.rad
                for ant in range(nant):
                    for ivp, vp in enumerate(vp_list):

                        assert vp.wcs.wcs.ctype[
                            0] == 'RA---SIN', vp.wcs.wcs.ctype[0]
                        assert vp.wcs.wcs.ctype[
                            1] == 'DEC--SIN', vp.wcs.wcs.ctype[1]

                        worldloc = [
                            ra_comp * r2d, dec_comp * r2d, vp.wcs.wcs.crval[2],
                            vp.wcs.wcs.crval[3]
                        ]
                        nchan, npol, ny, nx = vp.data.shape

                        try:
                            pixloc = vp.wcs.sub(2).wcs_world2pix(
                                [worldloc[:2]], 1)[0]
                            assert pixloc[0] > 2
                            assert pixloc[0] < nx - 3
                            assert pixloc[1] > 2
                            assert pixloc[1] < ny - 3
                            gain = real_splines[ivp].ev(pixloc[1], pixloc[0]) \
                                   + 1j * imag_splines[ivp](pixloc[1], pixloc[0])
                            antgain[ant] += vp_coeffs[ant, ivp] * gain
                            antwt[ant] = 1.0
                            number_good += 1
                        except:
                            number_bad += 1
                            antgain[ant] = 1e15
                            antwt[ant] = 0.0

                        antgain[ant] = 1.0 / antgain[ant]

                    gaintables[icomp].gain[
                        iha, :, :, :] = antgain[:, numpy.newaxis,
                                                numpy.newaxis, numpy.newaxis]
                    gaintables[icomp].weight[
                        iha, :, :, :] = antwt[:, numpy.newaxis, numpy.newaxis,
                                              numpy.newaxis]
                    gaintables[icomp].phasecentre = comp.direction

    if number_bad > 0:
        log.warning(
            "simulate_gaintable_from_voltage_patterns: %d points are inside the voltage pattern image"
            % (number_good))
        log.warning(
            "simulate_gaintable_from_voltage_patterns: %d points are outside the voltage pattern image"
            % (number_bad))

    return gaintables
Esempio n. 6
0
def create_gaintable_from_pointingtable(vis,
                                        sc,
                                        pt,
                                        vp,
                                        vis_slices=None,
                                        scale=1.0,
                                        order=3,
                                        **kwargs):
    """ Create gaintables from a pointing table

    :param vis:
    :param sc: Sky components for which pierce points are needed
    :param pt: Pointing table
    :param vp: Voltage pattern
    :param scale: Multiply the screen by this factor
    :param order: order of spline (default is 3)
    :return:
    """
    assert isinstance(vis, BlockVisibility)

    nant = vis.vis.shape[1]
    gaintables = [
        create_gaintable_from_blockvisibility(vis, **kwargs) for i in sc
    ]

    nchan, npol, ny, nx = vp.data.shape

    real_spline = RectBivariateSpline(range(ny),
                                      range(nx),
                                      vp.data[0, 0, ...].real,
                                      kx=order,
                                      ky=order)
    imag_spline = RectBivariateSpline(range(ny),
                                      range(nx),
                                      vp.data[0, 0, ...].imag,
                                      kx=order,
                                      ky=order)

    # The time in the Visibility is hour angle in seconds!
    for iha, rows in enumerate(vis_timeslice_iter(vis, vis_slices=vis_slices)):
        v = create_visibility_from_rows(vis, rows)
        ha = numpy.average(v.time)
        pt_rows = (pt.time == ha)
        pointing_ha = pt.pointing[pt_rows]
        number_bad = 0
        number_good = 0

        r2d = 180.0 / numpy.pi
        for icomp, comp in enumerate(sc):
            antgain = numpy.zeros([nant], dtype='complex')
            for ant in range(nant):
                worldloc = [
                    float(
                        (comp.direction.ra.rad + pointing_ha[0, ant, 0, 0, 0])
                        * r2d),
                    float(
                        (comp.direction.dec.rad + pointing_ha[0, ant, 0, 0, 1])
                        * r2d), vp.wcs.wcs.crval[2], vp.wcs.wcs.crval[3]
                ]
                try:
                    pixloc = vp.wcs.wcs_world2pix([worldloc], 0)[0][0:2]
                    gain = real_spline.ev(
                        pixloc[1],
                        pixloc[0]) + 1j * imag_spline(pixloc[1], pixloc[0])
                    antgain[ant] = 1.0 / (scale * gain)
                    number_good += 1
                except:
                    number_bad += 1
                    antgain[ant] = 0.0

            gaintables[icomp].gain[iha, :, :, :] = antgain[:, numpy.newaxis,
                                                           numpy.newaxis,
                                                           numpy.newaxis]
            gaintables[icomp].phasecentre = comp.direction

        if number_bad > 0:
            log.warning(
                "create_gaintable_from_pointingtable: %d points are inside the voltage pattern image"
                % (number_good))
            log.warning(
                "create_gaintable_from_pointingtable: %d points are outside the voltage pattern image"
                % (number_bad))

    return gaintables