def OnPressEnter(self,event): # self.labelVariable.set( self.entryVariable.get()+" (You pressed ENTER)" ) url = self.entryVariable.get() try: processed_url = process_url(url).values() (pred, conf) = self.voter.vote(processed_url) url_class = "Malicious" if pred == 1 else "Benign" self.labelVariable.set("URL Classified as {}, Confidence: {:.4f}%".format(url_class, conf * 100)) except: self.labelVariable.set("Not a valid URL") self.entry.focus_set() self.entry.selection_range(0, Tkinter.END)
def create_dataset(urls, label): X, y = [], [] for url in urls: url_dict = process_url(url) values = [] for value in url_dict.itervalues(): values.append(value) # print value # print item.value X.append(values) y.append(label) return np.array(X), np.array(y)
def OnPressEnter(self, event): # self.labelVariable.set( self.entryVariable.get()+" (You pressed ENTER)" ) url = self.entryVariable.get() try: processed_url = process_url(url).values() (pred, conf) = self.voter.vote(processed_url) url_class = "Malicious" if pred == 1 else "Benign" self.labelVariable.set( "URL Classified as {}, Confidence: {:.4f}%".format( url_class, conf * 100)) except: self.labelVariable.set("Not a valid URL") self.entry.focus_set() self.entry.selection_range(0, Tkinter.END)
# train = dataset.from_npy(path, 'train.npy') # train_X, train_y = train[:, :-1], train[:, -1] # voter.fit(train_X, train_y) # save_voter(voter, path) voter = load_voter(path) test = dataset.from_npy(path, 'test.npy') test_X, test_y = test[:, :-1], test[:, -1] voter.confusion_matrix(test_X, test_y) # for clf in voter._classifiers: # print type(clf).__name__ # cm = confusion_matrix(test_y, clf.predict(test_X)) # plot_confusion_matrix(cm) # plt.draw() # test_urls = [ 'https://www.youtube.com/watch?v=4WM6hB7l4Lc&list=PLQVvvaa0QuDd0flgGphKCej-9jp-QdzZ3&index=12&feature=iv&src_vid=81ZGOib7DTk&annotation_id=annotation_1856532697', 'http://ld.mediaget.com/index.php?l=ru&fu=http:/www.playground.ru/download/?cheat=grand_theft_auto_4_gta_iv_episodes_from_liberty_city_eflc_sohranenie_100-41709&r=playground.ru&f=grand_theft_auto_4_gta_iv_episodes_from_liberty_city_eflc__&%23x421;&%23x43e;&%23x445;&%23x440;&%23x430;&%23x43d;&%23x435;&%23x43d;&%23x438;&%23x435;_100%25', 'https://raw.github.com/inquisb/shellcodeexec/master/windows/shellcodeexec.x32.exe', 'http://www.ezthemes.com/site_advertisers/extrafindWD.exe' ] for test_url in test_urls: processed_url = process_url(test_url).values() print voter.vote(processed_url) # break # winner, conf = voter.vote(processed_url) # print 'Classification:', 'Malicious' if winner == 1 else 'Benign', 'Confidence:', conf * 100 # # plt.show()
# # train = dataset.from_npy(path, 'train.npy') # train_X, train_y = train[:, :-1], train[:, -1] # voter.fit(train_X, train_y) # save_voter(voter, path) voter = load_voter(path) test = dataset.from_npy(path, 'test.npy') test_X, test_y = test[:, :-1], test[:, -1] voter.confusion_matrix(test_X, test_y) # for clf in voter._classifiers: # print type(clf).__name__ # cm = confusion_matrix(test_y, clf.predict(test_X)) # plot_confusion_matrix(cm) # plt.draw() # test_urls = [ 'https://www.youtube.com/watch?v=4WM6hB7l4Lc&list=PLQVvvaa0QuDd0flgGphKCej-9jp-QdzZ3&index=12&feature=iv&src_vid=81ZGOib7DTk&annotation_id=annotation_1856532697', 'http://ld.mediaget.com/index.php?l=ru&fu=http:/www.playground.ru/download/?cheat=grand_theft_auto_4_gta_iv_episodes_from_liberty_city_eflc_sohranenie_100-41709&r=playground.ru&f=grand_theft_auto_4_gta_iv_episodes_from_liberty_city_eflc__&%23x421;&%23x43e;&%23x445;&%23x440;&%23x430;&%23x43d;&%23x435;&%23x43d;&%23x438;&%23x435;_100%25', 'https://raw.github.com/inquisb/shellcodeexec/master/windows/shellcodeexec.x32.exe', 'http://www.ezthemes.com/site_advertisers/extrafindWD.exe'] for test_url in test_urls: processed_url = process_url(test_url).values() print voter.vote(processed_url) # break # winner, conf = voter.vote(processed_url) # print 'Classification:', 'Malicious' if winner == 1 else 'Benign', 'Confidence:', conf * 100 # # plt.show()