Esempio n. 1
0
processor = Processor()

cap = cv2.VideoCapture("test.mp4")
while (cap.isOpened()):
    _, frame = cap.read()
    canny_img = processor.canny(frame)
    cropped_img = processor.region_of_interest(canny_img)
    lines = cv2.HoughLinesP(cropped_img,
                            2,
                            np.pi / 180,
                            100,
                            np.array([]),
                            minLineLength=40,
                            maxLineGap=1)
    avg_lines = processor.average_slope_intercept(frame, lines)

    # Display the lines on top of our coloured image
    line_img = processor.display_lines(frame, avg_lines)
    combo_img = cv2.addWeighted(frame, 0.8, line_img, 1, 0)

    # Present image in a window - top-right of your monitor.
    cv2.imshow('result', combo_img)
    cv2.moveWindow('result', 0, 0)
    cv2.waitKey(1)
    if cv2.waitKey(1) == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()
Esempio n. 2
0
import cv2
import matplotlib.pyplot as plt
from processor import Processor

processor = Processor()

# Format image
img = cv2.imread('test_image.jpg')
lane_img = np.copy(img)
canny_img = processor.canny(lane_img)
cropped_img = processor.region_of_interest(canny_img)

# Create a single line for each side of the road, averaged from the HoughLines algorithm
lines = cv2.HoughLinesP(cropped_img,
                        2,
                        np.pi / 180,
                        100,
                        np.array([]),
                        minLineLength=40,
                        maxLineGap=1)
avg_lines = processor.average_slope_intercept(lane_img, lines)

# Display the lines on top of our coloured image
line_img = processor.display_lines(img, avg_lines)
combo_img = cv2.addWeighted(img, 0.8, line_img, 1, 0)

# Present image in a window - top-right of your monitor.
cv2.imshow('result', combo_img)
cv2.moveWindow('result', 0, 0)
cv2.waitKey()