Esempio n. 1
0
class ProbDriver(Driver):
    def __init__(self):
        self.svmProcessor = SVMProcessor()
        self.probFeatureExtractor = ProbFeatureExtractor()
        self.preProcessor = PreProcessor()

    def data_process(self, filePath):
        ListT, ListX, ListY, ListP = self.pre_process(filePath)
        ListR = self.svmProcessor.radius(ListX, ListY)
        ListVX = self.svmProcessor.velocity_of_x(ListX, ListT)
        ListVY = self.svmProcessor.velocity_of_y(ListY, ListT)
        ListAX = self.svmProcessor.acc_of_vx(ListVX, ListT)
        ListAY = self.svmProcessor.acc_of_vy(ListVY, ListT)

        return ListT, ListR, ListVX, ListVY, ListAX, ListAY

    def generate_features(self, filePath):
        ListT, ListR, ListVX, ListVY, ListAX, ListAY = self.data_process(
            filePath)
        self.probFeatureExtractor.generate_features(ListT, ListR, ListVX,
                                                    ListVY, ListAX, ListAY)
        return self.probFeatureExtractor.features()

    def feature_clear(self):
        self.probFeatureExtractor.clear()

    def PS(self, F):
        P = []
        for i in range(len(F)):
            p = numpy.exp(-1 * pow(
                (F[i] - self.meanF[i]), 2) / 2 / self.varF[i]) / numpy.sqrt(
                    2 * self.meanF[i] * self.varF[i])
            P.append(p)
        # print [round(p, 11) for p in P]
        # print numpy.isnan(P)

        PArray = numpy.asarray(P)
        PArray[numpy.isnan(PArray)] = 0

        return PArray.sum()

    def ps_temp(self, ListF):
        self.meanF = []
        self.varF = []

        Features = []
        for F in ListF:
            for i in range(len(F)):
                if i >= len(Features):
                    Features.append([])
                Features[i].append(F[i])
        for F in Features:
            self.meanF.append(numpy.mean(F))
            self.varF.append(numpy.var(F))
Esempio n. 2
0
class ProbDriver(Driver):
    def __init__(self):
        self.svmProcessor = SVMProcessor()
        self.probFeatureExtractor = ProbFeatureExtractor()
        self.preProcessor = PreProcessor()

    def data_process(self, filePath):
        ListT, ListX, ListY, ListP = self.pre_process(filePath)
        ListR = self.svmProcessor.radius(ListX, ListY)
        ListVX = self.svmProcessor.velocity_of_x(ListX, ListT)
        ListVY = self.svmProcessor.velocity_of_y(ListY, ListT)
        ListAX = self.svmProcessor.acc_of_vx(ListVX, ListT)
        ListAY = self.svmProcessor.acc_of_vy(ListVY, ListT)

        return ListT, ListR, ListVX, ListVY, ListAX, ListAY

    def generate_features(self, filePath):
        ListT, ListR, ListVX, ListVY, ListAX, ListAY = self.data_process(filePath)
        self.probFeatureExtractor.generate_features(ListT, ListR, ListVX, ListVY, ListAX, ListAY)
        return self.probFeatureExtractor.features()

    def feature_clear(self):
        self.probFeatureExtractor.clear()

    def PS(self, F):
        P = []
        for i in range(len(F)):
            p = numpy.exp(-1 * pow((F[i] - self.meanF[i]), 2) / 2 / self.varF[i]) / numpy.sqrt(
                2 * self.meanF[i] * self.varF[i]
            )
            P.append(p)
        # print [round(p, 11) for p in P]
        # print numpy.isnan(P)

        PArray = numpy.asarray(P)
        PArray[numpy.isnan(PArray)] = 0

        return PArray.sum()

    def ps_temp(self, ListF):
        self.meanF = []
        self.varF = []

        Features = []
        for F in ListF:
            for i in range(len(F)):
                if i >= len(Features):
                    Features.append([])
                Features[i].append(F[i])
        for F in Features:
            self.meanF.append(numpy.mean(F))
            self.varF.append(numpy.var(F))
Esempio n. 3
0
class SVMDriver(Driver):
    def __init__(self):
        self.preProcessor = PreProcessor()
        self.svmProcessor = SVMProcessor()
        self.svmFeatureExtractor = SVMFeatureExtractor()

    def data_process(self, fileName):
        ListT, ListX, ListY, ListP = self.pre_process(fileName)
        ListR = self.svmProcessor.radius(ListX, ListY)
        ListVX = self.svmProcessor.velocity_of_x(ListX, ListT)
        ListVY = self.svmProcessor.velocity_of_y(ListY, ListT)
        ListVR = self.svmProcessor.velocity_of_r(ListR, ListT)
        ListVP = self.svmProcessor.velocity_of_p(ListP, ListT)
        ListAX = self.svmProcessor.acc_of_vx(ListVX, ListT)
        ListAY = self.svmProcessor.acc_of_vy(ListVY, ListT)
        ListAR = self.svmProcessor.acc_of_vr(ListVR, ListT)

        return ListT, ListX, ListY, ListP, ListR, ListVX, ListVY, ListVR, ListVP, ListAX, ListAY, ListAR

    def generate_features(self, fileName):
        ListT, ListX, ListY, ListR, ListP, ListVX, ListVY, ListVR, ListVP, ListAX, ListAY, ListAR = self.data_process(
            fileName
        )
        self.svmFeatureExtractor.generate_features(
            ListT, ListX, ListY, ListR, ListP, ListVX, ListVY, ListVR, ListVP, ListAX, ListAY, ListAR
        )
        return self.svmFeatureExtractor.features()

    def feature_clear(self):
        self.svmFeatureExtractor.clear()
Esempio n. 4
0
class SVMDriver(Driver):
    def __init__(self):
        self.preProcessor = PreProcessor()
        self.svmProcessor = SVMProcessor()
        self.svmFeatureExtractor = SVMFeatureExtractor()

    def data_process(self, fileName):
        ListT, ListX, ListY, ListP = self.pre_process(fileName)
        ListR = self.svmProcessor.radius(ListX, ListY)
        ListVX = self.svmProcessor.velocity_of_x(ListX, ListT)
        ListVY = self.svmProcessor.velocity_of_y(ListY, ListT)
        ListVR = self.svmProcessor.velocity_of_r(ListR, ListT)
        ListVP = self.svmProcessor.velocity_of_p(ListP, ListT)
        ListAX = self.svmProcessor.acc_of_vx(ListVX, ListT)
        ListAY = self.svmProcessor.acc_of_vy(ListVY, ListT)
        ListAR = self.svmProcessor.acc_of_vr(ListVR, ListT)

        return ListT, ListX, ListY, ListP, ListR, ListVX, ListVY, ListVR, \
                ListVP, ListAX, ListAY, ListAR

    def generate_features(self, fileName):
        ListT, ListX, ListY, ListR, ListP, ListVX, ListVY, ListVR, ListVP, \
                ListAX, ListAY, ListAR = self.data_process(fileName)
        self.svmFeatureExtractor.generate_features(ListT, ListX, ListY, ListR,
                                                   ListP, ListVX, ListVY,
                                                   ListVR, ListVP, ListAX,
                                                   ListAY, ListAR)
        return self.svmFeatureExtractor.features()

    def feature_clear(self):
        self.svmFeatureExtractor.clear()
Esempio n. 5
0
 def __init__(self):
     self.svmProcessor = SVMProcessor()
     self.probFeatureExtractor = ProbFeatureExtractor()
     self.preProcessor = PreProcessor()
Esempio n. 6
0
 def features_of_acceleration(self, ListAR, ListAX, ListAY):
     """
     acceleration related features
     """
     maxAR = self._max(ListAR)
     maxAX = self._max(ListAX)
     maxAY = self._max(ListAY)
     minAR = self._min(ListAR)
     minAX = self._min(ListAX)
     minAY = self._min(ListAY)
     avgAR = self._avg(ListAR)
     avgAX = self._avg(ListAX)
     avgAY = self._avg(ListAY)
     stdAX = self._std(ListAX)
     stdAY = self._std(ListAY)
     avgPosAX = numpy.mean(self._select_positive(ListAX))
     avgPosAY = numpy.mean(self._select_positive(ListAY))
     avgNegAX = numpy.mean(self._select_negative(ListAX))
     avgNegAY = numpy.mean(self._select_negative(ListAY))
     ListAbsAX = SVMProcessor.abs_acc_of_x(SVMProcessor(), ListAX)
     ListAbsAY = SVMProcessor.abs_acc_of_y(SVMProcessor(), ListAY)
     avgAbsAX = self._avg(ListAbsAX)
     avgAbsAY = self._avg(ListAbsAY)
     maxAbsAX = self._max(ListAbsAX)
     maxAbsAY = self._max(ListAbsAY)
     stdAbsAX = self._std(ListAbsAX)
     stdAbsAY = self._std(ListAbsAY)
     pointsCntGtZeroAX = self._points_gt_zero(ListAX)
     pointsCntLtZeroAX = self._points_lt_zero(ListAX)
     pointsCntGtZeroAY = self._points_gt_zero(ListAY)
     pointsCntLtZeroAY = self._points_lt_zero(ListAY)
     
     self.svmFeature.append(maxAR) # 88
     self.svmFeature.append(avgAR) # 89
     self.svmFeature.append(0) # 90 ####TODO####
     self.svmFeature.append(0) # 91 ####TODO####
     self.svmFeature.append(stdAX) # 92
     self.svmFeature.append(stdAY) # 93
     self.svmFeature.append(avgAbsAX / maxAbsAX) # 94
     self.svmFeature.append(avgAbsAY / maxAbsAY) # 95
     self.svmFeature.append(avgAX / self.avgPosVX) # 96
     self.svmFeature.append(avgAY / self.avgPosVY) # 97
     self.svmFeature.append(avgAR / self.maxVR) # 98
     self.svmFeature.append(minAR / self.avgVR) # 99
     self.svmFeature.append(minAY / avgAY) # 100
     self.svmFeature.append(avgPosAX / avgNegAX) # 101
     self.svmFeature.append(maxAR / self.avgPosVX) # 102
     self.svmFeature.append(maxAR / self.avgPosVY) # 103
     self.svmFeature.append(maxAR / self.avgNegVX) # 104
     self.svmFeature.append(maxAR / self.avgNegVY) # 105
     self.svmFeature.append(minAR / self.avgPosVX) # 106
     self.svmFeature.append(minAR / self.avgPosVY) # 107
     self.svmFeature.append(minAR / self.avgNegVX) # 108
     self.svmFeature.append(minAR / self.avgNegVY) # 109
     self.svmFeature.append(avgNegAY / avgPosAY) # 110
     self.svmFeature.append(avgAR / self.avgNegVX) # 111
     self.svmFeature.append(avgAR / self.avgNegVY) # 112
     self.svmFeature.append(avgAbsAX) # 113
     self.svmFeature.append(avgAbsAY) # 114
     self.svmFeature.append(stdAbsAX) # 115
     self.svmFeature.append(stdAbsAY) # 116
     self.svmFeature.append(maxAX) # 117
     self.svmFeature.append(minAX) # 118
     self.svmFeature.append(maxAY) # 119
     self.svmFeature.append(minAY) # 120
     self.svmFeature.append(avgAX) # 121
     self.svmFeature.append(avgAY) # 122
     self.svmFeature.append(pointsCntGtZeroAX) # 123
     self.svmFeature.append(pointsCntLtZeroAX) # 124
     self.svmFeature.append(pointsCntGtZeroAY) # 125
     self.svmFeature.append(pointsCntLtZeroAY) # 126
Esempio n. 7
0
    def features_of_velocity(self, ListVX, ListVY, ListVR):
        """
            velocity related features
        """
        # 将ListVX, ListVY, ListVR保存
        self.ListVX = ListVX
        self.ListVY = ListVY
        self.ListVR = ListVR

        self.avgVX = self._avg(ListVX)
        self.avgVY = self._avg(ListVY)
        self.avgVR = self._avg(ListVR)

        self.maxVX = self._max(ListVX)
        self.maxVY = self._max(ListVY)
        self.maxVR = self._max(ListVR)

        self.minVX = self._min(ListVX)
        self.minVY = self._min(ListVY)
        self.minVR = self._min(ListVR)

        posVX = self._select_positive(ListVX)
        posVY = self._select_positive(ListVY)
        negVX = self._select_negative(ListVX)
        negVY = self._select_negative(ListVY)

        self.avgPosVX = numpy.mean(posVX)
        self.avgPosVY = numpy.mean(posVY)

        self.maxPosVX = max(posVX)
        self.maxPosVY = max(posVY)

        self.minPosVX = min(posVX)
        self.minPosVY = min(posVY)

        self.avgNegVX = numpy.mean(negVX)
        self.avgNegVY = numpy.mean(negVY)

        self.maxNegVX = max(negVX)
        self.maxNegVY = max(negVY)

        self.minNegVX = min(negVX)
        self.minNegVY = min(negVY)

        self.stdVX = self._std(ListVX)
        self.stdVY = self._std(ListVY)

        ListAbsVX = SVMProcessor.abs_velocity_of_x(SVMProcessor(), ListVX)
        ListAbsVY = SVMProcessor.abs_velocity_of_y(SVMProcessor(), ListVY)
        self.avgAbsVX = self._avg(ListAbsVX)
        self.avgAbsVY = self._avg(ListAbsVY)

        self.stdAbsVX = self._std(ListAbsVX)
        self.stdAbsVY = self._std(ListAbsVY)

        self.svmFeature.append(self.avgVX) # 1
        self.svmFeature.append(self.avgVY) # 2
        self.svmFeature.append(self.stdVX) # 3
        self.svmFeature.append(self.stdVY) # 4
        self.svmFeature.append(self.avgVR) # 5
        self.svmFeature.append(self.maxVX/self.maxVY) # 6
        self.svmFeature.append(self.avgPosVX/self.maxPosVX) # 7
        self.svmFeature.append(self.avgPosVY/self.maxPosVY) # 8
        self.svmFeature.append(self.avgNegVX/self.maxNegVX) # 9
        self.svmFeature.append(self.avgNegVY/self.maxNegVY) # 10
        self.svmFeature.append(self.avgVR/self.maxVR) # 11
        self.svmFeature.append(self.minVX/self.maxVX) # 12
        self.svmFeature.append(self.minVY/self.maxVY) # 13
        self.svmFeature.append(self.minVX/self.avgVX) # 14
        self.svmFeature.append(self.minVY/self.avgVY) # 15
        self.svmFeature.append(self.minVR/self.maxVR) # 16
        self.svmFeature.append(self.avgPosVX/self.avgNegVX) # 17
        self.svmFeature.append(self.avgPosVY/self.avgNegVY) # 18
        self.svmFeature.append(self.avgPosVX/self.avgPosVY) # 19
        self.svmFeature.append(self.avgPosVX/self.avgNegVY) # 20
        self.svmFeature.append(self.avgNegVX/self.avgPosVY) # 21
        self.svmFeature.append(self.avgNegVX/self.avgNegVY) # 22
        self.svmFeature.append(self.avgPosVX/self.maxNegVX) # 23
        self.svmFeature.append(self.avgPosVY/self.maxNegVY) # 24
        self.svmFeature.append(self.minVX/self.avgVX) # 25
        self.svmFeature.append(self.minVY/self.avgVY) # 26
        self.svmFeature.append(self.avgVX/self.maxVX) # 27
        self.svmFeature.append(self.avgVY/self.maxVY) # 28
        self.svmFeature.append(self.avgPosVX) # 29
        self.svmFeature.append(self.avgPosVY) # 30
        self.svmFeature.append(self.avgNegVX) # 31
        self.svmFeature.append(self.avgNegVY) # 32
        self.svmFeature.append(self.maxVX) # 33
        self.svmFeature.append(self.maxVY) # 34
        self.svmFeature.append(self.avgVX) # 35
        self.svmFeature.append(self.avgVY) # 36
        self.svmFeature.append(self.avgAbsVX) # 37
        self.svmFeature.append(self.avgAbsVY) # 38
        self.svmFeature.append(self.stdAbsVX) # 39
        self.svmFeature.append(self.stdAbsVY) # 40
        self.svmFeature.append(self._points_lt_zero(self.ListVX)) # 41
        self.svmFeature.append(self._points_lt_zero(self.ListVY)) # 42
        self.svmFeature.append(self._points_gt_zero(self.ListVX)) # 43
        self.svmFeature.append(self._points_gt_zero(self.ListVY)) # 44
        self.svmFeature.append(self.maxNegVX) # 45
        self.svmFeature.append(self.maxNegVY) # 46
Esempio n. 8
0
 def __init__(self):
     self.svmProcessor = SVMProcessor()
     self.probFeatureExtractor = ProbFeatureExtractor()
     self.preProcessor = PreProcessor()