Esempio n. 1
0
def test_default_values():
    """ Tests the default values of the configuration file. First with a simple configuration
    and then with some parameters customized, to check if missing dict entries are set correctly. """

    # First with simple configuration
    config_file = './study/profit_default.yaml'
    config = Config.from_file(config_file)
    assert config.get('base_dir') == path.abspath('./study')
    assert config.get('run_dir') == config.get('base_dir')
    assert config['files'].get('input') == path.join(config.get('base_dir'),
                                                     'input.txt')
    assert config['files'].get('output') == path.join(config.get('base_dir'),
                                                      'output.txt')
    assert config['fit'].get('surrogate') == 'GPy'
    assert config['fit'].get('kernel') == 'RBF'

    # Now check when dicts are only partially set
    config_file = './study/profit_default_2.yaml'
    config = Config.from_file(config_file)
    assert config['files'].get('input') == path.join(config.get('base_dir'),
                                                     'custom_input.in')
    assert config['files'].get('output') == path.join(config.get('base_dir'),
                                                      'output.txt')
    assert config['fit'].get('surrogate') == 'GPy'
    assert config['fit'].get('kernel') == 'RBF'
    assert config['fit'].get('plot') is True
Esempio n. 2
0
def test_1D():
    """Test a simple function f(u) = cos(10*u) + u."""

    config_file = 'study_1D/profit_1D.yaml'
    config = Config.from_file(config_file)
    model_file = './study_1D/model_1D_Custom.hdf5'
    try:
        run(f"profit run {config_file}", shell=True, timeout=TIMEOUT)
        sur = Surrogate.load_model(model_file)
        assert sur.get_label() == 'Custom'
        assert sur.trained
        assert sur.kernel.__name__ == 'RBF'
        assert allclose(sur.hyperparameters['length_scale'],
                        0.15975022,
                        rtol=PARAM_RTOL)
        assert allclose(sur.hyperparameters['sigma_f'],
                        0.91133526,
                        rtol=PARAM_RTOL)
        assert allclose(sur.hyperparameters['sigma_n'],
                        0.00014507,
                        rtol=PARAM_RTOL)
    finally:
        clean(config)
        if path.exists(model_file):
            remove(model_file)
Esempio n. 3
0
def test_2D():
    """Test a Rosenbrock 2D function with two random inputs."""

    config_file = 'study_2D/profit_2D.yaml'
    config = Config.from_file(config_file)
    model_file = './study_2D/model_2D_Custom.hdf5'
    try:
        run(f"profit run {config_file}", shell=True, timeout=TIMEOUT)
        sur = Surrogate.load_model(model_file)
        assert sur.get_label() == 'Custom'
        assert sur.trained
        assert sur.kernel.__name__ == 'RBF'
        assert sur.ndim == 2
        assert allclose(sur.hyperparameters['length_scale'],
                        0.96472754,
                        rtol=PARAM_RTOL)
        assert allclose(sur.hyperparameters['sigma_f'],
                        15.02288291,
                        rtol=PARAM_RTOL)
        assert allclose(sur.hyperparameters['sigma_n'],
                        8.83125694e-06,
                        rtol=PARAM_RTOL)
    finally:
        clean(config)
        if path.exists(model_file):
            remove(model_file)
Esempio n. 4
0
    def __init__(self, config=None, yaml=None):
        from chaospy import (generate_quadrature, orth_ttr, fit_quadrature, E, Std,
            descriptives)
        self.params = OrderedDict()
        self.backend = None
        self.param_files = None

        if yaml:
            print('  load configuration from %s'%yaml)
            config = Config.from_file(yaml)

        if config:
            if (config['uq']['backend'] == 'ChaosPy'):
              self.backend = ChaosPy(config['uq']['order'])
              # TODO: extend

            self.Normal = self.backend.Normal
            self.Uniform = self.backend.Uniform

            params = config['uq']['params']
            for pkey in params:
              if params[pkey]['dist'] == 'Uniform':
                self.params[pkey] = self.Uniform(params[pkey]['min'],
                                                 params[pkey]['max'])
            if 'param_files' in config['uq']:
              self.param_files = config['uq']['param_files']

        self.template_dir = 'template/'
        self.run_dir = 'run/'
Esempio n. 5
0
def test_1D():
    """Test a simple function f(u) = cos(10*u) + u."""

    config_file = 'study_1D/profit_1D.yaml'
    config = Config.from_file(config_file)
    model_file = './study_1D/model_1D.hdf5'
    try:
        run(f"profit run {config_file}", shell=True, timeout=TIMEOUT)
        run(f"profit fit {config_file}", shell=True, timeout=TIMEOUT)
        sur = Surrogate.load_model(model_file)
        assert sur.get_label() == 'GPy'
        assert sur.trained
        assert sur.model.kern.name == 'rbf'
        assert allclose(sur.model.likelihood.variance[0],
                        4.809421284738159e-11,
                        atol=NLL_ATOL)
        assert allclose(sur.model.kern.variance[0],
                        1.6945780226638725,
                        rtol=PARAM_RTOL)
        assert allclose(sur.model.kern.lengthscale,
                        0.22392982500520792,
                        rtol=PARAM_RTOL)
    finally:
        clean(config)
        if path.exists(model_file):
            remove(model_file)
Esempio n. 6
0
def test_2D():
    """Test a Rosenbrock 2D function with two random inputs."""

    config_file = 'study_2D/profit_2D.yaml'
    config = Config.from_file(config_file)
    model_file = './study_2D/model_2D.hdf5'
    try:
        run(f"profit run {config_file}", shell=True, timeout=TIMEOUT)
        run(f"profit fit {config_file}", shell=True, timeout=TIMEOUT)
        sur = Surrogate.load_model(model_file)
        assert sur.get_label() == 'GPy'
        assert sur.trained
        assert sur.model.kern.name == 'rbf'
        assert sur.model.kern.input_dim == 2
        assert allclose(sur.model.likelihood.variance[0],
                        2.657441549034709e-08,
                        atol=NLL_ATOL)
        assert allclose(sur.model.kern.variance[0],
                        270.2197671669302,
                        rtol=PARAM_RTOL)
        assert allclose(sur.model.kern.lengthscale[0],
                        1.079943283873971,
                        rtol=PARAM_RTOL)
    finally:
        clean(config)
        if path.exists(model_file):
            remove(model_file)
Esempio n. 7
0
def test_txt_input():
    """Tests if the input files in the single run directories are created from the template."""

    config_file = './study/profit.yaml'
    config = Config.from_file(config_file)
    run(f"profit run {config_file}", shell=True, timeout=TIMEOUT)
    assert path.isfile('./study/run_000/mockup.in')
    clean(config)
Esempio n. 8
0
 def from_env(cls, label='run'):
     from profit.config import Config
     base_config = Config.from_file(checkenv('PROFIT_CONFIG_PATH'))
     config = base_config[label]
     if config['custom']:
         cls.handle_config(config, base_config)
     run_id = int(checkenv('PROFIT_RUN_ID')) + int(
         os.environ.get('PROFIT_ARRAY_ID', 0))
     return cls.from_config(config, run_id)
Esempio n. 9
0
def test_yaml_py_config():
    """Tests if .yaml and .py configuration files are equal by comparing dict keys and values."""

    yaml_file = '././study/profit.yaml'
    py_file = '././study/profit_config.py'
    config_yaml = Config.from_file(yaml_file)
    config_py = Config.from_file(py_file)

    def assert_dict(dict_items1, dict_items2):
        for (key1, value1), (key2, value2) in zip(dict_items1, dict_items2):
            assert key1 == key2
            if type(value1) is dict:
                assert_dict(value1.items(), value2.items())
            elif type(value1) is ndarray:
                assert value1.dtype == value2.dtype
                assert value1.shape == value2.shape
            elif key1 != 'config_path':
                assert value1 == value2

    assert_dict(config_yaml.items(), config_py.items())
Esempio n. 10
0
def test_hdf5_input_output():
    """Checks the data inside a .hdf5 input file."""

    config_file = './study/profit_hdf5.yaml'
    config = Config.from_file(config_file)
    try:
        run(f"profit run {config_file}", shell=True, timeout=TIMEOUT)
        data_in = load(config['files'].get('input'))
        assert data_in.shape == (2, 1)
        assert data_in.dtype.names == ('u', 'v', 'w')
    finally:
        clean(config)
Esempio n. 11
0
def multi_test_1d(study, config_file, output_file):
    """ test 1D with different config files """
    config_file = path.join(study, config_file)
    output_file = path.join(study, output_file)
    config = Config.from_file(config_file)
    try:
        run(f"profit run {config_file}", shell=True, timeout=TIMEOUT)
        output = load(output_file)
        assert output.shape == (7, 1)
        assert all(output['f'] - array([0.7836, -0.5511, 1.0966, 0.4403, 1.6244, -0.4455, 0.0941]).reshape((7, 1))
                   < 1e-4)
    finally:
        clean(config)
Esempio n. 12
0
def test_symlinks():
    """Checks if relative symbolic links are handled correctly."""

    config_file = './study/profit_symlink.yaml'
    config = Config.from_file(config_file)
    base_file = './study/run_000/mockup.in'
    link_file = './study/run_000/some_subdir/symlink_link.txt'
    try:
        run(f"profit run {config_file}", shell=True, timeout=TIMEOUT)
        with open(link_file, 'r') as link:
            with open(base_file, 'r') as base:
                link_data = link.read()
                base_data = base.read()
                assert link_data == base_data and not link_data.startswith('{')
    finally:
        clean(config)
Esempio n. 13
0
def test_txt_json_input():
    """Checks if the numpy arrays resulting from a text and a json input are equal."""

    config_file = './study/profit_json.yaml'
    config = Config.from_file(config_file)
    try:
        run(f"profit run {config_file}", shell=True, timeout=TIMEOUT)
        with open(path.join(config['run_dir'], 'run_000',
                            'mockup_json.in')) as jf:
            json_input = jload(jf)
        json_input = array([float(val) for val in json_input.values()])
        with open(path.join(config['run_dir'], 'run_000', 'mockup.in')) as tf:
            txt_input = genfromtxt(tf)
        assert json_input.dtype == txt_input.dtype
        assert json_input.shape == txt_input.shape
    finally:
        clean(config)
Esempio n. 14
0
def test_numpytxt():
    from numpy import array
    from profit.run.default import NumpytxtPostprocessor

    BASE_CONFIG = Config.from_file('numpy.yaml')
    config = {
        'class': 'numpytxt',
        'path': 'numpytxt.csv',
        'options': {
            'delimiter': ','
        }
    }
    data = array([0], dtype=[('f', float, (3, )), ('g', float)])[0]

    NumpytxtPostprocessor.handle_config(config, BASE_CONFIG)
    post = NumpytxtPostprocessor(config)
    post(data)

    assert all(data['f'] == [1.4, 1.3, 1.2])
    assert data['g'] == 10
Esempio n. 15
0
def test_2D_independent():
    """Test a Fermi function which returns a vector over energy and is sampled over different temperatures."""

    config_file = 'study_independent/profit_independent.yaml'
    config = Config.from_file(config_file)
    model_file = config['fit'].get('save')
    try:
        run(f"profit run {config_file}", shell=True, timeout=TIMEOUT)
        run(f"profit fit {config_file}", shell=True, timeout=TIMEOUT)
        sur = Surrogate.load_model(model_file)
        assert sur.get_label() == 'GPy'
        assert sur.trained
        assert sur.model.kern.name == 'rbf'
        assert sur.model.kern.input_dim == 1
        assert allclose(sur.model.likelihood.variance[0], 2.8769632382230903e-05, atol=NLL_ATOL)
        assert allclose(sur.model.kern.variance[0], 0.4382486018781694, rtol=PARAM_RTOL)
        assert allclose(sur.model.kern.lengthscale[0], 0.24077767526116695, rtol=PARAM_RTOL)
    finally:
        clean(config)
        if path.exists(model_file):
            remove(model_file)
Esempio n. 16
0
def test_zeromq():
    from threading import Thread
    from time import sleep
    from profit.run.zeromq import ZeroMQInterface, ZeroMQRunnerInterface

    BASE_CONFIG = Config.from_file('numpy.yaml')
    MAX_IDS = BASE_CONFIG['ntrain']
    config = {'class': 'zeromq'}
    ZeroMQRunnerInterface.handle_config(config, BASE_CONFIG)

    def runner():
        rif = ZeroMQRunnerInterface(config, MAX_IDS, BASE_CONFIG['input'],
                                    BASE_CONFIG['output'])
        try:
            rif.input[['u', 'v']][RUN_ID] = VALUE_U, VALUE_V
            for i in range(3):
                rif.poll()
                sleep(0.5)
            assert rif.output['f'][RUN_ID] == VALUE_F
            assert rif.internal['TIME'][RUN_ID] == VALUE_T
            assert rif.internal['DONE'][RUN_ID]
        finally:
            rif.clean()

    def worker():
        wif = ZeroMQInterface(config, run_id=RUN_ID)
        assert_wif(wif)
        wif.output['f'] = VALUE_F
        wif.time = VALUE_T
        wif.done()

    rt = Thread(target=runner)
    wt = Thread(target=worker)

    rt.start()
    wt.start()
    wt.join()
    rt.join()
Esempio n. 17
0
def test_multi_output():
    """Test a 1D function with two outputs."""
    config_file = 'study_multi_output/profit_multi_output.yaml'
    config = Config.from_file(config_file)
    model_file = config['fit'].get('save')
    try:
        run(f"profit run {config_file}", shell=True, timeout=TIMEOUT)
        run(f"profit fit {config_file}", shell=True, timeout=TIMEOUT)
        sur = Surrogate.load_model(model_file)
        assert sur.get_label() == 'GPy'
        assert sur.trained
        assert sur.model.kern.name == 'ICM'
        assert allclose(sur.model.likelihood.likelihoods_list[0].variance[0], 0.00032075301845035454, atol=NLL_ATOL)
        assert allclose(sur.model.likelihood.likelihoods_list[0].variance[0], 3.773865299540149e-09, atol=NLL_ATOL)
        assert allclose(sur.model.kern.rbf.variance[0], 0.52218353, rtol=PARAM_RTOL)
        assert allclose(sur.model.kern.rbf.lengthscale, 0.20184872, rtol=PARAM_RTOL)
    finally:
        clean(config)
        from os.path import splitext
        # .hdf5 is not yet supported for multi output model, so it is saved as .pkl instead.
        model_file = splitext(model_file)[0] + '.pkl'
        if path.exists(model_file):
            remove(model_file)
Esempio n. 18
0
def test_memmap():
    from profit.run.default import MemmapInterface, MemmapRunnerInterface
    import os

    BASE_CONFIG = Config.from_file('numpy.yaml')
    MAX_IDS = BASE_CONFIG['ntrain']
    config = {'class': 'memmap'}
    try:
        MemmapRunnerInterface.handle_config(config, BASE_CONFIG)

        rif = MemmapRunnerInterface(config, MAX_IDS, BASE_CONFIG['input'],
                                    BASE_CONFIG['output'])
        rif.input[['u', 'v']][1] = VALUE_U, VALUE_V
        wif = MemmapInterface(config, RUN_ID)
        assert_wif(wif)
        wif.output['f'] = VALUE_F
        wif.time = VALUE_T
        wif.done()
        assert rif.output['f'][RUN_ID] == VALUE_F
        assert rif.internal['TIME'][RUN_ID] == VALUE_T
        assert rif.internal['DONE'][RUN_ID]
    finally:
        if 'path' in config and os.path.exists(config['path']):
            os.remove(config['path'])
Esempio n. 19
0
def main():
    print(sys.argv)
    if len(sys.argv) < 2:
        print_usage()
        return

    if len(sys.argv) < 3:
        config_file = os.path.join(os.getcwd(), 'profit.yaml')
    else:
        config_file = os.path.abspath(sys.argv[2])

    config = Config.from_file(config_file)

    sys.path.append(config['base_dir'])

    if (sys.argv[1] == 'pre'):
        eval_points = get_eval_points(config)

        try:
            profit.fill_run_dir(eval_points,
                                template_dir=config['template_dir'],
                                run_dir=config['run_dir'],
                                overwrite=False)
        except RuntimeError:
            question = ("Warning: Run directories in {} already exist "
                        "and will be overwritten. Continue? (y/N) ").format(
                            config['run_dir'])
            if (yes):
                print(question + 'y')
            else:
                answer = input(question)
                if (not yes) and not (answer == 'y' or answer == 'Y'):
                    exit()

            profit.fill_run_dir(eval_points,
                                template_dir=config['template_dir'],
                                run_dir=config['run_dir'],
                                overwrite=True)

    elif (sys.argv[1] == 'run'):
        print(read_input(config['base_dir']))
        if config['run']:
            run = profit.run.LocalCommand(config['run']['cmd'],
                                          config['run']['ntask'])
            run.start()
        else:
            raise RuntimeError('No "run" entry in profit.yaml')

    elif (sys.argv[1] == 'collect'):
        from numpy import array, empty, nan, savetxt
        from .util import save_txt
        spec = importlib.util.spec_from_file_location('interface',
                                                      config['interface'])
        interface = importlib.util.module_from_spec(spec)
        spec.loader.exec_module(interface)
        data = empty((config['ntrain'], len(config['output'])))
        for krun in range(config['ntrain']):
            run_dir_single = os.path.join(
                config['run_dir'],
                str(krun).zfill(3)
            )  #.zfill(3) is an option that forces krun to have 3 digits
            print(run_dir_single)
            try:
                os.chdir(run_dir_single)
                data[krun, :] = interface.get_output()
            except:
                data[krun, :] = nan
            finally:
                os.chdir(config['base_dir'])
        savetxt('output.txt', data, header=' '.join(config['output']))

    elif (sys.argv[1] == 'fit'):
        from numpy import loadtxt
        from h5py import File
        x = loadtxt('input.txt')
        y = loadtxt('output.txt')
        fresp = fit(x, y)
        with File('profit.hdf5', 'w') as h5f:
            h5f['xtrain'] = fresp.xtrain
            h5f['ytrain'] = fresp.ytrain
            h5f['yscale'] = fresp.yscale
            h5f['ndim'] = fresp.ndim
            h5f['variables'] = [v.numpy() for v in fresp.m.variables]

    elif (sys.argv[1] == 'ui'):
        from profit.ui import app
        app.app.run_server(debug=True)

    else:
        print_usage()
        return
Esempio n. 20
0
def main():
    """
    Main command line interface
    sys.argv is an array whose values are the entered series of command
    (e.g.: sys.argv=['profit','run', '--active-learning', '/home/user/example'])
    """
    """ Get parameters from argv """
    parser = ArgumentParser(
        usage='profit <mode> (base-dir)',
        description=
        "Probabilistic Response Model Fitting with Interactive Tools",
        formatter_class=RawTextHelpFormatter)
    parser.add_argument(
        'mode',  # ToDo: subparsers?
        metavar='mode',
        choices=['run', 'fit', 'ui', 'clean'],
        help='run ... start simulation runs \n'
        'fit ... fit data with Gaussian Process \n'
        'ui ... visualise results \n'
        'clean ... remove run directories and input/output files')
    parser.add_argument(
        'base_dir',
        metavar='base-dir',
        help='path to config file (default: current working directory)',
        default=getcwd(),
        nargs='?')
    args = parser.parse_args()

    print(args)
    """ Instantiate Config class from the given file """
    config_file = safe_path_to_file(args.base_dir, default='profit.yaml')
    config = Config.from_file(config_file)

    sys.path.append(config['base_dir'])

    if args.mode == 'run':
        from tqdm import tqdm
        from profit.pre import get_eval_points, write_input
        from profit.util import save

        runner = Runner.from_config(config['run'], config)

        eval_points = get_eval_points(config)
        write_input(config['files']['input'], eval_points)

        if 'activelearning' in (safe_str(v['kind'])
                                for v in config['input'].values()):
            from profit.fit import ActiveLearning
            from profit.sur.sur import Surrogate
            runner.fill(eval_points)
            if 'active_learning' not in config:
                config['active_learning'] = {}
            ActiveLearning.handle_config(config['active_learning'], config)
            al = ActiveLearning.from_config(runner, config['active_learning'],
                                            config)
            al.run_first()
            al.learn()
            if config['active_learning'].get('save'):
                al.save(config['active_learning']['save'])
        else:
            params_array = [row[0] for row in eval_points]
            runner.spawn_array(tqdm(params_array), blocking=True)

        if config['run']['clean']:
            runner.clean()

        if config['files']['output'].endswith('.txt'):
            data = runner.structured_output_data
            save(config['files']['output'], data.reshape(data.size, 1))
        else:
            save(config['files']['output'], runner.output_data)

    elif args.mode == 'fit':
        from numpy import arange, hstack, meshgrid
        from profit.util import load
        from profit.sur.sur import Surrogate

        sur = Surrogate.from_config(config['fit'], config)

        if not sur.trained:
            x = load(config['files']['input'])
            y = load(config['files']['output'])
            x = hstack([x[key] for key in x.dtype.names])
            y = hstack([y[key] for key in y.dtype.names])

            sur.train(x, y)

        if config['fit'].get('save'):
            sur.save_model(config['fit']['save'])
        if config['fit'].get('plot'):
            try:
                xpred = [
                    arange(minv, maxv, step)
                    for minv, maxv, step in config['fit']['plot'].get('xpred')
                ]
                xpred = hstack(
                    [xi.flatten().reshape(-1, 1) for xi in meshgrid(*xpred)])
            except AttributeError:
                xpred = None
            sur.plot(xpred, independent=config['independent'], show=True)

    elif args.mode == 'ui':
        from profit.ui import init_app
        app = init_app(config)
        app.run_server(debug=True)

    elif args.mode == 'clean':
        from shutil import rmtree
        from os import path, remove
        run_dir = config['run_dir']

        question = "Are you sure you want to remove the run directories in {} " \
                   "and input/output files? (y/N) ".format(config['run_dir'])
        if yes:
            print(question + 'y')
        else:
            answer = input(question)
            if not answer.lower().startswith('y'):
                print('exit...')
                sys.exit()

        for krun in range(config['ntrain']):
            single_run_dir = path.join(run_dir, f'run_{krun:03d}')
            if path.exists(single_run_dir):
                rmtree(single_run_dir)
        if path.exists(config['files']['input']):
            remove(config['files']['input'])
        if path.exists(config['files']['output']):
            remove(config['files']['output'])

        runner = Runner.from_config(config['run'], config)
        runner.clean()
        try:
            rmtree(config['run']['log_path'])
        except FileNotFoundError:
            pass