Esempio n. 1
0
def gauss_seidel(a: Dmatrix, b: Dvector, x0: Dvector, N: int = N):
    k = 0
    x = x0.copy()

    xo = Dvector(1, N)  # xo[1...N]

    while True:
        # xo <- x_k, x <- x_{k+1}
        for i in range(1, N + 1):
            xo[i] = x[i]  # x_k に x_(k+1) を代入
        # i=1 の処理
        x[1] = (b[1] - sum(
            (a[1][j] * xo[j] for j in range(2, N + 1)))) / a[1][1]
        # i=2,3,...N の処理
        for i in range(2, N + 1):
            s = sum((a[i][j] * x[j] for j in range(1, i)))  # i-1列までの和
            t = sum((a[i][j] * xo[j] for j in range(i + 1, N + 1)))  # i+1列以降の和
            x[i] = (b[i] - s - t) / a[i][i]
        for i in range(1, N + 1):
            xo[i] = xo[i] - x[i]
        eps = vector_norm_max(xo)
        k += 1

        if eps <= EPS or k >= KMAX:
            break

    if k == KMAX:
        print("答えが見つかりませんでした")
        exit(1)
    else:
        print(f"反復回数は{k}回です")
        return x
Esempio n. 2
0
def inverse_iteration(a: Dmatrix, a_qr: Dmatrix, eps: float) -> Dmatrix:
    mu = 0.0

    y = Dvector(1, N)
    a_ii = a_qr.copy()

    for i in range(1, N + 1):
        lambda_ = a_ii[i][i]  # 近似固有値の代入
        y[i] = 1.0  # 初期値設定

        # 行列の作成およびLU分解
        lu = a.copy()
        for k in range(1, N + 1):
            lu[k][k] -= lambda_
        lu, p = lu_decomp(lu, N)  # LU分解

        # 逆反復法
        while True:
            muo = mu
            v = y.copy()
            v = lu_solve(lu, v, p, N)  # 固有ベクトルの計算
            mu = inner_product(v, y)  # 補正
            v2s = sqrt(inner_product(v, v))
            for j in range(1, N + 1):
                y[j] = v[j] / v2s

            if abs((mu - muo) / mu) < eps:
                break

        # 結果の代入(固有ベクトルはaのi列に)
        for j in range(1, N + 1):
            a_ii[j][i] = y[j]

    return a_ii
Esempio n. 3
0
def main():
    print("データの個数を入力してください--->")
    n = int(input())
    n -= 1  # データ数が n なので, n <- n-1 として添字を0,1,...,n とする

    print("補間点を入力してください--->")
    xi = float(input())

    x = Dvector(0, n)  # x[0...n]
    y = Dvector(0, n)  # y[0...n]

    # ファイルのオープン
    with open("input_lag.dat", "r") as fin:
        with open("output_lag.dat", "w") as fout:
            input_vector(x, "x", fin, fout)  # ベクトル x の入出力
            input_vector(y, "y", fin, fout)  # ベクトル y の入出力

            print("補間の結果は, P({:.6f})={:.6f}".format(xi,
                                                    lagrange(x, y, 0, n, xi)))

            # グラフを描くために結果をファイルに出力
            xi = x[0]
            while xi <= x[n]:
                fout.write("{:.6f} \t {:.6f}\n".format(
                    xi, lagrange(x, y, 0, n, xi)))
                xi += 0.01
Esempio n. 4
0
def adams(y0: float, y: Dvector, a: float, b: float, n: int, N: int,
          eps: float, f) -> Dvector:
    y = Dvector(0, n)  # y[0,1,...n] の確保
    F = Dvector(0, 4)  # F[0,1,...4] の確保
    h = (b - a) / n  # 刻み幅の設定

    # スタータ
    y = rk4(y0, y, a, b, n, f)
    x = a
    for i in range(4):
        F[i] = f(x, y[i])
        x += h

    # 反復計算
    for i in range(3, n):
        # アダムス・バッシュフォース法
        F[3] = f(x - h, y[i])
        yp = y[i] + h * (55.0 * F[3] - 59.0 * F[2] + 37.0 * F[1] -
                         9.0 * F[0]) / 24.0
        for j in range(1, N + 1):
            # アダムス・ムルトン法
            F[4] = f(x, yp)
            y[i + 1] = y[i] + h * (9.0 * F[4] + 19.0 * F[3] - 5.0 * F[2] +
                                   F[1]) / 24.0
            if abs(y[i + 1] - yp) < eps:
                break
            yp = y[i + 1]
        for j in range(1, 5):
            F[j - 1] = F[j]  # F[i] の更新
        x += h

    return y
Esempio n. 5
0
 def __init__(self, row_head_idx: int, row_last_idx: int, col_head_idx: int, col_last_idx: int):
     matrix = Dvector(row_head_idx, row_last_idx)
     for i in range(row_head_idx, row_last_idx+1):
         matrix[i] = Dvector(col_head_idx, col_last_idx)
     self.matrix = matrix
     self.row_head_idx = row_head_idx
     self.row_last_idx = row_last_idx
     self.col_head_idx = col_head_idx
     self.col_last_idx = col_last_idx
Esempio n. 6
0
def main():
    global N

    # ベクトルの定義, 配列 a,b の添字は 1~N
    a, b = Dvector(1, N), Dvector(1, N)
    for i in range(1, N + 1):
        a[i] = i / 20.0
        b[i] = i / 10.0

    print(f"a と b の内積は{inner_product(a, b)} です")
Esempio n. 7
0
def householder(a: Dmatrix, n: int) -> Dmatrix:
    u = Dvector(1, n)
    f = Dvector(1, n)
    g = Dvector(1, n)

    a_hh = a.copy()

    for k in range(1, n - 1):
        # v の計算
        for i in range(1, k + 1):
            u[i] = 0.0
        for i in range(k + 1, n + 1):
            u[i] = a_hh[i][k]

        # s の計算
        ss = 0.0
        for i in range(k + 2, n + 1):
            ss += u[i] * u[i]
        if abs(ss) <= 0.0:  # 消去が必要ない場合の処理
            continue
        s = sqrt(ss + u[k + 1] * u[k + 1])
        if u[k + 1] > 0.0:
            s = -s

        # uの計算
        u[k + 1] -= s
        uu = sqrt(ss + u[k + 1] * u[k + 1])
        for i in range(k + 1, n + 1):
            u[i] /= uu

        # f, gの計算
        for i in range(1, n + 1):
            f[i], g[i] = 0.0, 0.0
            for j in range(k + 1, n + 1):
                f[i] += a_hh[i][j] * u[j]
                g[i] += a_hh[j][i] * u[j]

        # gammaの計算
        gamma = 0.0
        for j in range(1, n + 1):
            gamma += u[j] * g[j]

        # f, gの計算
        for i in range(1, n + 1):
            f[i] -= gamma * u[i]
            g[i] -= gamma * u[i]

        # A の計算
        for i in range(1, n + 1):
            for j in range(1, n + 1):
                a_hh[i][j] -= 2.0 * u[i] * g[j] + 2.0 * f[i] * u[j]

    return a_hh
Esempio n. 8
0
def main():
    global M, N

    x = Dvector(1, M)  # x[1...M]
    y = Dvector(1, M)  # y[1...M]

    # ファイルのオープン
    with open("input_func.dat", "r") as fin:
        with open("output_func.dat", "w") as fout:
            input_vector(x, 'x', fin, fout)  # ベクトル x の入出力
            input_vector(y, 'y', fin, fout)  # ベクトル y の入出力

            least_square(x, y, fout)  # 最小2乗近似
Esempio n. 9
0
def main():
    a = 0.0
    b = 3.1415926535897932
    N = 2  # N変数

    y = Dvector(1, N)
    f = Dvector(1, N)

    y[1], y[2] = 1.0, 0.0  # 初期値の設定
    print("分割数を入力してください--->", end="")
    n = int(input())

    rk4_m(y, f, N, a, b, n, FUNC)  # ルンゲ・クッタ法
Esempio n. 10
0
def jacobi_lin(a: Dmatrix, b: Dvector, x: Dvector) -> Dvector:
    k = 0

    xn = Dvector(1, N) # xn[1...N]

    # x <- x_k, xn <- x_{k+1}
    while True:
        for i in range(1, N+1):
            xn[i] = b[i]
            for j in range(1, N+1):
                xn[i] -= a[i][j] * x[j]
            xn[i] += a[i][i] * x[i]  # 余分に引いた分を加える
            xn[i] /= a[i][i]
        for i in range(1, N+1):
            x[i] = xn[i] - x[i]
        eps = vector_norm_max(x)     # 最大値ノルムの計算
        for i in range(1, N+1):
            x[i] = xn[i]             # 値を更新
        k += 1

        if eps <= EPS or k >= KMAX:
            break
    
    if k == KMAX:
        print("答えが見つかりませんでした")
    else:
        print(f"反復回数は{k}回です")

    return x
Esempio n. 11
0
def least_square(x: Dvector, y: Dvector, fout):
    global M, N
    p = Dmatrix(1, N + 1, 1, N + 1)  # p[1...N+1][1...N+1]
    a = Dvector(1, N + 1)  # a[1...N-1]

    # 右辺ベクトルの作成
    for i in range(1, N + 2):
        a[i] = 0.0
        for j in range(1, M + 1):
            a[i] += y[j] * (x[j]**(i - 1))

    # 係数行列の作成
    for i in range(1, N + 2):
        for j in range(1, i + 1):
            p[i][j] = 0.0
            for k in range(1, M + 1):
                p[i][j] += x[k]**(i + j - 2)
            p[j][i] = p[i][j]

    # 連立一次方程式を解く. 結果は a に上書き
    a = gauss2(p, a, N + 1)

    # 結果の出力
    fout.write("最小2乗近似式は y=\n")
    for i in range(N + 1, 0, -1):
        fout.write("+ {:5.2f} x^{} ".format(a[i], i - 1))
    fout.write("\n")
Esempio n. 12
0
def main():
    a = Dmatrix(1, N, 1, N) # 行列 a[1...N][1...N]
    b = Dvector(1, N)       # b[1...N]
    x = Dvector(1, N)       # x[1...N]

    # ファイルのオープン
    with open("input_sp.dat", "r") as fin:
        with open("output_sp.dat", "w") as fout:
            input_matrix( a, 'A', fin, fout ) # 行列 A の入出力
            input_vector( b, 'b', fin, fout ) # ベクトル b の入出力
            input_vector( x, 'x', fin, fout ) # 初期ベクトル x0 の入出力
            x = jacobi_lin( a, b, x )         # ヤコビ法

            # 結果の出力
            fout.write("Ax=b の解は次の通りです\n")
            for i in range(1, N+1):
                fout.write("{:.6f}\n".format(x[i]))
Esempio n. 13
0
def main():
    global N
    a = Dmatrix(1, N, 1, N)  # 行列 a[1...N][1...N]
    b = Dvector(1, N)  # b[1...N]
    with open("input.dat", "r") as fin:
        with open("output.dat", "w") as fout:
            input_matrix(a, 'A', fin, fout)
            input_vector(b, 'b', fin, fout)
Esempio n. 14
0
def matrix_vector_product(a: Dmatrix, b: Dvector):
    N = b.last_idx - b.head_idx + 1
    c = Dvector(1, N)

    for i in range(1, N + 1):
        c[i] = sum((a[i][j] * b[j] for j in range(1, N + 1)))

    return c
Esempio n. 15
0
def main():
    a = Dmatrix(1, N, 1, N)  # 行列 a[1...N][1...N]
    b = Dvector(1, N)  # b[1...N]
    x0 = Dvector(1, N)  # x[1...N]

    # ファイルのオープン
    with open("input_sp.dat", "r") as fin:
        with open("output_sp.dat", "w") as fout:
            input_matrix(a, 'A', fin, fout)  # 行列 A の入出力
            input_vector(b, 'b', fin, fout)  # ベクトル b の入出力
            input_vector(x0, 'x0', fin, fout)  # 初期ベクトル x0 の入出力
            x = gauss_seidel(a, b, x0)  # ガウス・ザイデル法

            # 結果の出力
            fout.write("Ax=b の解は次の通りです\n")
            for i in range(1, N + 1):
                fout.write("{:.6f}\n".format(x[i]))
Esempio n. 16
0
def cg(a: Dmatrix, b: Dvector, x0: Dvector):
    k = 0

    r = Dvector(1, N)  # r[1...N]
    p = Dvector(1, N)  # p[1...N]
    x = x0.copy()

    tmp = matrix_vector_product(a, x)  # tmp <- A b

    for i in range(1, N + 1):
        p[i] = b[i] - tmp[i]
        r[i] = p[i]

    while True:
        # alpha の計算
        tmp = matrix_vector_product(a, p)  # tmp <- A p_k
        work = inner_product(p, tmp)  # work <- (p, Ap_k)
        alpha = inner_product(p, r) / work

        # x_{k+1} と r_{k+1} の計算
        for i in range(1, N + 1):
            x[i] += alpha * p[i]
        for i in range(1, N + 1):
            r[i] -= alpha * tmp[i]

        # 収束判定
        eps = vector_norm1(r)
        k += 1  # 反復回数の更新
        if eps < EPS:
            break

        # beta と p_{k+1} の計算
        beta = -inner_product(r, tmp) / work
        for i in range(1, N + 1):
            p[i] = r[i] + beta * p[i]

        if k >= KMAX:
            break

    if k == KMAX:
        print("答えが見つかりませんでした")
        exit(1)
    else:
        print(f"反復回数は{k}回です")  # 反復回数を画面に表示
        return x
Esempio n. 17
0
def qr(a: Dmatrix, eps: float, n: int) -> Dmatrix:
    # 領域の確保
    q    = Dmatrix(1, n, 1, n)
    work = Dvector(1, n)
    a_qr = a.copy()
    m = n
    while m > 1:
        # 収束判定
        if abs(a_qr[m][m-1]) < eps:
            m = m - 1
            continue

        # 原点移動
        s = a_qr[n][n]
        if m == n:  # m=n のときは原点移動なし
            s = 0.0
        for i in range(1, m+1):
            a_qr[i][i] -= s
        
        # QR法
        for i in range(1, m+1):
            for j in range(1, m+1):
                q[i][j] = 0.0      # Q を m x m 単位行列で初期化
            q[i][i] = 1.0
        
        # R と Q の計算
        for i in range(1, m):
            r = sqrt( a_qr[i][i]*a_qr[i][i] + a_qr[i+1][i]*a_qr[i+1][i] )
            if r == 0.0:
                sint = 0.0
                cost = 0.0
            else:
                sint = a_qr[i+1][i] / r
                cost = a_qr[i][i] / r
            for j in range(i+1, m+1):
                tmp = a_qr[i][j]*cost + a_qr[i+1][j]*sint
                a_qr[i+1][j] = -a_qr[i][j]*sint + a_qr[i+1][j]*cost
                a_qr[i][j] = tmp
            a_qr[i+1][i] = 0.0
            a_qr[i][i] = r
            for j in range(1, m+1):        # Q は P の転置
                tmp = q[j][i]*cost + q[j][i+1]*sint
                q[j][i+1] = -q[j][i]*sint + q[j][i+1]*cost
                q[j][i] = tmp
            
        # RQ の計算
        for i in range(1, m+1):
            for j in range(i, m+1):
                work[j] = a_qr[i][j]
            for j in range(1, m+1):
                a_qr[i][j] = sum( ( work[k] * q[k][j] for k in range(i, m+1) ) )
            
        # 原点移動後の処理
        for i in range(1, m+1):
            a_qr[i][i] += s

    return a_qr
Esempio n. 18
0
def main():
    a = Dmatrix(1, N, 1, N) # 行列領域の確保
    x = Dvector(1, N)       # ベクトル領域の確保

    # ファイルのオープン
    with open("input_eigen.dat", "r") as fin:
        with open("result_eigen.dat", "w") as fout:
            input_matrix( a, 'A', fin, fout ) # 行列 A の入出力
            input_vector( x, 'x', fin, fout ) # ベクトル x の入出力
            power_method( a, x, fout )        # べき乗法
Esempio n. 19
0
def matrix_norm1(a: Dmatrix):
    m1, m2 = a.row_head_idx, a.row_last_idx
    n1, n2 = a.col_head_idx, a.col_last_idx
    work = Dvector(n1, n2)  # ベクトルwork[n1...n2]

    # 列和の計算
    for j in range(n1, n2 + 1):
        work[j] = 0.0
        for i in range(m1, m2 + 1):
            work[j] += abs(a[i][j])

    return max(work)
Esempio n. 20
0
def matrix_norm_max(a: Dmatrix):
    m1, m2 = a.row_head_idx, a.row_last_idx
    n1, n2 = a.col_head_idx, a.col_last_idx
    work = Dvector(m1, m2)

    # 行和の計算
    for i in range(m1, m2 + 1):
        work[i] = 0.0
        for j in range(n1, n2 + 1):
            work[i] += abs(a[i][j])

    return max(work)
Esempio n. 21
0
def rk4_m(y: Dvector, f: Dvector, N: int, a: float, b: float, n: int, F):
    k1 = Dvector(1, N)
    k2 = Dvector(1, N)
    k3 = Dvector(1, N)
    k4 = Dvector(1, N)
    tmp = Dvector(1, N)

    # 初期値の設定・表示
    h = (b - a) / n  # 刻み幅
    x = a
    print("x={:.6f} \t y1={:6f} \t y2={:.6f} ".format(x, y[1], y[2]))

    # ルンゲ・クッタ法(N 変数版)
    for i in range(n):
        # k1 の計算
        FUNC(x, y, f)
        for j in range(1, N + 1):
            k1[j] = f[j]
        for j in range(1, N + 1):
            tmp[j] = y[j] + h * k1[j] / 2.0
        # k2 の計算
        FUNC(x + h / 2.0, tmp, f)
        for j in range(1, N + 1):
            k2[j] = f[j]
        for j in range(1, N + 1):
            tmp[j] = y[j] + h * k2[j] / 2.0
        # k3 の計算
        FUNC(x + h / 2.0, tmp, f)
        for j in range(1, N + 1):
            k3[j] = f[j]
        for j in range(1, N + 1):
            tmp[j] = y[j] + h * k3[j]
        # k4 の計算
        FUNC(x + h, tmp, f)
        for j in range(1, N + 1):
            k4[j] = f[j]
        for j in range(1, N + 1):
            y[j] = y[j] + h / 6.0 * (k1[j] + 2.0 * k2[j] + 2.0 * k3[j] + k4[j])
        x += h
        print("x={:.6f} \t y1={:.6f} \t y2={:.6f} ".format(x, y[1], y[2]))
Esempio n. 22
0
def sor(a: Dmatrix, b: Dvector, x0: Dvector, omega: float, N: int = N):
    k = 0

    x = x0.copy()
    xo = Dvector(1, N)  # xo[1...N]

    while True:
        # xo <- x_k, x <- x_{k+1}
        for i in range(1, N + 1):
            xo[i] = x[i]  # x_k に x_(k+1) を代入

        # i=1 の処理
        x[1] = (b[1] - sum(
            (a[1][j] * xo[j] for j in range(2, N + 1)))) / a[1][1]

        # i=2,3,...N の処理
        for i in range(2, N + 1):
            s = sum((a[i][j] * x[j] for j in range(1, i)))  # i-1列までの和
            t = sum((a[i][j] * xo[j] for j in range(i + 1, N + 1)))  # i+1列以降の和
            x[i] = (b[i] - s - t) / a[i][i]
        # ここまではガウス・ザイデル法と同じ

        # SOR法
        for i in range(1, N + 1):
            x[i] = xo[i] + omega * (x[i] - xo[i])  # 補正

        for i in range(1, N + 1):
            xo[i] = xo[i] - x[i]
        eps = vector_norm_max(xo)
        k += 1

        if eps <= EPS or k >= KMAX:
            break

    if k == KMAX:
        print("答えが見つかりませんでした")
        exit(1)
    else:
        print(f"反復回数は{k}回です")  # 反復回数を画面に表示
        return x
Esempio n. 23
0
def cholesky_solve(a_cd: Dmatrix, b: Dvector, N: int = N):
    b_cs = b.copy()
    # LDy = b
    b_cs[1] = b[1] / a_cd[1][1]
    for i in range(2, N + 1):
        b_cs[i] = (b_cs[i] - sum((a_cd[j][j] * a_cd[i][j] * b_cs[j]
                                  for j in range(1, i)))) / a_cd[i][i]

    # L^t x = y
    for i in range(N - 1, 0, -1):
        b_cs[i] -= sum((a_cd[j][i] * b_cs[j] for j in range(i + 1, N + 1)))

    return b_cs
Esempio n. 24
0
def newton2(x: float, y: float, z: float):
    global N
    k = 0
    d = Dvector(1, N)  # d[1...N]
    xk = Dvector(1, N)  # xk[1...N]
    J = Dmatrix(1, N, 1, N)  # 行列 J[1...N][1...N]

    xk[1] = x
    xk[2] = y
    xk[3] = z

    while True:
        # 右辺ベクトルの作成
        d[1] = -f(xk[1], xk[2], xk[3])
        d[2] = -g(xk[1], xk[2], xk[3])
        d[3] = -h(xk[1], xk[2], xk[3])

        # ヤコビ行列の作成
        J[1][1] = f_x(xk[1], xk[2], xk[3])
        J[1][2] = f_y(xk[1], xk[2], xk[3])
        J[1][3] = f_z(xk[1], xk[2], xk[3])
        J[2][1] = g_x(xk[1], xk[2], xk[3])
        J[2][2] = g_y(xk[1], xk[2], xk[3])
        J[2][3] = g_z(xk[1], xk[2], xk[3])
        J[3][1] = h_x(xk[1], xk[2], xk[3])
        J[3][2] = h_y(xk[1], xk[2], xk[3])
        J[3][3] = h_z(xk[1], xk[2], xk[3])
        d = gauss(J, d, N)  # 連立一次方程式を解く
        for i in range(1, N + 1):
            xk[i] += d[i]
        k += 1

        if vector_norm1(d) <= EPS or k >= KMAX:
            break

    if k == KMAX:
        print("答えが見つかりませんでした")
    else:
        print(f"答えは x={xk[1]}, y={xk[2]}, z={xk[3]} です")
Esempio n. 25
0
def main():
    a, b, y0 = 0.0, 1.0, 1.0

    print("分割数を入力してください--->", end="")
    n = int(input())

    y = Dvector(0, n)
    y = rk4(y0, y, a, b, n, func)  # ルンゲクッタ法

    # 結果の表示
    h = (b - a) / n
    for i in range(n + 1):
        print("x={:.6f} \t y={:.6f} ".format(a + i * h, y[i]))
Esempio n. 26
0
def main():
    print("分割数を入力してください--->", end="")
    n = int(input())

    u = Dvector(1,n-1)
    u_bvp = bvp( u, 0.0, 1.0, 0.0, 0.0, n, func )
    h = 1.0 / n

    print("求める答え u と誤差の最大値 e は次の通りです.")
    for i in range(1,n):
        print("u[{}]={:.6f}".format(i, u_bvp[i]))
    for i in range(1,n):
        u_bvp[i] -= exact(i*h)
    print("e={:.6f}".format(vector_norm_max(u_bvp)))
Esempio n. 27
0
def lu_solve(a: Dmatrix, b: Dvector, p: List[int], N:int=N) -> Dvector:
    b_lu = b.copy() # 値渡し

    # 右辺の行交換
    for k in range(1, N):
        b_lu[k], b_lu[p[k]] = b_lu[p[k]], b_lu[k]
        # 前進代入
        for i in range(k+1, N+1):
            b_lu[i] += a[i][k] * b_lu[k]

    # 後退代入
    b_lu[N] /= a[N][N]
    for k in range(N-1, 0, -1):
        b_lu[k] = ( b_lu[k] - sum( (a[k][j] * b_lu[j] for j in range(k+1, N+1)) ) ) / a[k][k]

    return b_lu
Esempio n. 28
0
def main():
    global N
    a = Dmatrix(1, N, 1, N) # 行列 a[1...N][1...N]
    b = Dvector(1, N) # b[1...N]

    # ファイルのオープン
    with open("input.dat", "r") as fin:
        with open("output.dat", "w") as fout:
            input_matrix( a, 'A', fin, fout ) # 行列 A の入出力
            input_vector( b, 'b', fin, fout ) # ベクトル b の入出力
            b = simple_gauss( a, b )          # ガウス消去法

            # 結果の出力
            fout.write("Ax=b の解は次の通りです\n")
            for i in range(1, N+1):
                fout.write("{:.6f}\n".format(b[i]))
Esempio n. 29
0
def main():
    a, b, y0 = 0.0, 1.0, 1.0
    eps = 10.0**-8.0
    N = 10  # 最大反復回数N

    print("分割数を入力してください--->", end="")
    n = int(input())

    y = Dvector(0, n)

    # アダムス法
    y = adams(y0, y, a, b, n, N, eps, func)

    # 結果の表示
    h = (b - a) / n  # 刻み幅
    for i in range(n + 1):
        print("x={:.6f} \t y={:.6f} ".format(a + i * h, y[i]))
Esempio n. 30
0
def main():
    global N

    a = Dmatrix(1, N, 1, N)
    b = Dvector(1, N)

    # ファイルのオープン
    with open("input.dat", "r") as fin:
        with open("output.dat", "w") as fout:
            input_matrix(a, 'A', fin, fout)  # 行列 A の入出力
            input_vector(b, 'b', fin, fout)  # ベクトル b の入出力
            b = gauss(a, b)  # ガウス消去法

            # 結果の出力
            fout.write("Ax=b の解は次の通りです\n")
            for i in range(1, N + 1):
                fout.write(f"{b[i]}\n")