Esempio n. 1
0
 def train(self, inputExamples, expected, iterations=BARSIZE):
   if self.initialized:
     currentIteration = 1
     barIteration = 0
     statusBar = ChargingBar("\x1b[4;36m"+"\t>> Training:", max=BARSIZE)
     interval = int(iterations/BARSIZE) if iterations > 100 else 1
     errorMedia = 0
     statusBar.start()
     while(currentIteration <= iterations):
       errorMedia = 0
       prediction = self.__backPropagation(inputExamples, expected)
       errorMedia = self.cost_fun(prediction, expected)
       currentIteration += 1
       if barIteration % interval == 0:
         statusBar.next()
         barIteration = 0
       barIteration += 1
     while(currentIteration < BARSIZE):
       currentIteration += 1
       statusBar.next()
     statusBar.finish()
     self.trainingStatus = str(round(errorMedia,4)) + "TE"
     print("\x1b[1;33m"+"\t>> Error (Media) Cost: ", round(errorMedia,4))
     print("\x1b[0;37m"+"=-"*35 + "=")
   else:
     print("<Error>: Empty Neural Network, use reset() or loadFromFile(file)")
     exit(1)
Esempio n. 2
0
    def upload_to_ya(self, upload_list):
        ya_obj = YaUpLoader(self.ya_token)
        ya_load_to = input('\nВведите путь до папки на ya_disk: ')
        print(ya_obj.check_folder(ya_load_to))

        print(f'\nЗагружаем файлы на YaDisk')
        bar = ChargingBar('Countdown', max=len(upload_list[1]))
        hash_map = {}
        for photo in upload_list[1]:
            bar.start()
            file_name = photo['file_name']
            if file_name in hash_map.keys():
                last_name = file_name
                value = hash_map[last_name] + 1
                file_name = file_name.split('.')[0] + '_' + str(value) + '.jpg'
                hash_map[last_name] = value
            else:
                hash_map[file_name] = 1

            ya_file_to = ya_load_to + '/' + file_name
            url = photo['url']

            res = requests.get(url).content
            ya_obj.upload(ya_file_to, res)
            bar.next()
        bar.finish()
Esempio n. 3
0
    def discover_net(self, ip_range=24):
        protocol = self.protocol
        base_ip = self.my_ip

        # print_figlet()

        if not protocol:
            protocol = "ICMP"
        else:
            if protocol != "ICMP":
                logging.warning(
                    f"Warning: {protocol} is not supported by discover_net function! Changed to ICMP"
                )

        if protocol == "ICMP":
            logging.info("Starting - Discover Hosts Scan")

            base_ip = base_ip.split('.')
            base_ip = f"{str(base_ip[0])}.{str(base_ip[1])}.{str(base_ip[2])}.0/{str(ip_range)}"

            hosts = list(ipaddress.ip_network(base_ip))
            bar = ChargingBar("Scanning...", max=len(hosts))

            sys.stdout = None
            bar.start()

            threads = [None] * len(hosts)
            results = [None] * len(hosts)

            for i in range(len(threads)):
                threads[i] = Thread(target=self.send_icmp,
                                    args=(hosts[i], results, i))
                threads[i].start()

            for i in range(len(threads)):
                threads[i].join()
                bar.next()

            bar.finish()
            sys.stdout = sys.__stdout__

            hosts_found = [i for i in results if i is not None]

            if not hosts_found:
                logging.warn('[[red]-[/red]]Not found any host')
            else:
                print("")
                logging.info(f'{len(hosts_found)} hosts founded')
                for host in hosts_found:
                    logging.info(f'Host found: {host}')

            return True
        else:
            logging.critical("[[red]-[/red]]Invalid protocol for this scan")

            return False
Esempio n. 4
0
def process_default(out_file, algorithm):
    global CONFIG

    csv_file = open(out_file, 'w', newline='')
    csv_writer = csv.writer(csv_file,
                            delimiter=' ',
                            quotechar='|',
                            quoting=csv.QUOTE_MINIMAL)

    engine = create_engine(CONFIG['mysql'])

    print(f'Processing with {algorithm} algorithm...')
    stores = CONFIG['stores']
    barcodes = CONFIG['barcodes']
    periods = CONFIG['periods']
    iter_cnt = len(stores) * len(barcodes) * len(periods)
    bar = ChargingBar('Waiting...', max=iter_cnt)
    bar.start()

    for store_id in stores:
        for barcode in barcodes:
            bar.message = f'[Store: {store_id}] {str(barcode).ljust(13, " ")}'
            bar.update()

            df_barcode = get_barcode_daily_sales(engine, store_id, barcode)

            for period in periods:
                forecast_from_date = arrow.get(period['date'], 'DD.MM.YYYY')
                forecast_before_date = forecast_from_date.shift(
                    days=period['days'])

                forecast = do_forecast(algorithm, df_barcode,
                                       forecast_from_date,
                                       forecast_before_date)

                csv_writer.writerow([
                    store_id, barcode, period['date'], period['days'], forecast
                ])
                bar.next()

    bar.finish()
    csv_file.close()
    print(f'\nDone. Result was written to {args.output}')
Esempio n. 5
0
            # Cargo datos
            data = pickle.load(open(this_file, 'rb'))

            progress_bar = ChargingBar("Evaluating file {} - {}/{}".format(
                this_filename, this_file_idx + 1, len(test_filepaths)),
                                       suffix="%(percent)d%%")

            if realistic_check:
                # Separo datos en pedazos
                sign = [
                    data['data'][i:i + slice_samples]
                    for i in range(0, len(data['data']), slice_samples)
                ]

                progress_bar.max = len(sign)
                progress_bar.start()

                for this_slice_idx, this_slice in enumerate(sign):
                    """
                    if this_slice_idx % (round(len(sign) / 20)) == 0:
                        print("{}/{} slices evaluated.".format(this_slice_idx, len(sign)))
                    """

                    progress_bar.next()

                    # Si no pongo este if, el ultimo pedazo podria ser de distinto tamaño y fallar
                    if len(this_slice) == slice_samples:
                        # Analisis
                        this_data = torch.Tensor(this_slice)
                        this_data = this_data.view(1, 1,
                                                   slice_samples)  # Reshape
Esempio n. 6
0
def process_short(out_file, in_file, algorithm):
    global CONFIG

    beg_date = arrow.get('2019-10-01', 'YYYY-MM-DD')
    end_date = arrow.get('2020-01-31', 'YYYY-MM-DD')
    write_stdout(f'Forecast from {beg_date} to {end_date}\n')  # 123 days

    lines_count = 0
    if wc and sed:
        write_stdout(f'Counting {in_file} non-blank lines...  ')
        lines_count = int(wc(sed(r'/^\s*$/d', in_file), '-l'))
        print(lines_count)
    ops_count = lines_count * 123

    out_csv_file = open(out_file, 'w', newline='')
    in_csv_file = open(in_file, 'r', newline='\n')
    csv_writer = csv.writer(out_csv_file,
                            delimiter=' ',
                            quotechar='|',
                            quoting=csv.QUOTE_MINIMAL)
    csv_reader = csv.reader(in_csv_file, delimiter=',')

    engine = create_engine(CONFIG['mysql'])
    print(f'Processing short output with {algorithm} algorithm...')

    bar = None
    if ops_count > 0:
        bar = ChargingBar('Waiting...', max=ops_count)
        bar.start()

    i = 0
    dfs = {}
    for row in csv_reader:
        if row is not None and len(row):
            store_id = int(row[0])
            barcode = int(row[1])

            key = f'{store_id}-{barcode}'
            try:
                df_barcode = dfs[key]
            except KeyError:
                df_barcode = get_barcode_daily_sales(engine, store_id, barcode)
                dfs[key] = df_barcode

            for j, d in enumerate(arrow.Arrow.range('day', beg_date,
                                                    end_date)):
                forecast_from_date = d
                forecast_before_date = forecast_from_date.shift(days=5)

                forecast = do_forecast(algorithm, df_barcode,
                                       forecast_from_date,
                                       forecast_before_date)
                csv_writer.writerow([int(round(forecast))])

                if bar:
                    curr_op = i * 123 + j
                    if curr_op % 5 == 0:
                        bar.message = f'{curr_op} of {ops_count}'
                        bar.update()
                    bar.next()
            i += 1

    bar.message = 'Done'
    bar.update()

    out_csv_file.close()
    in_csv_file.close()
Esempio n. 7
0
    def __init__(self,
                 project_name,
                 image_list=None,
                 user_dir="/users.csv",
                 user_list=None,
                 ml_out_dir=None):
        """
        Inits the object
        :param project_name: project name (EG "gold")
        :param image_list: Optional, list of image Ids to load to memory (If None, uses all images)
        :param user_dir: Optional (preset), Directory of user metadata. This file contains data for
                each user including name, grades, and etc...
        :param user_id: Optional, preset a user ID to only do operations on that user
        """

        # init vars
        self.project_name = project_name
        images = os.listdir(config.WORKING_DIRECTORY + project_name +
                            "/images/")
        self.image_list = []
        self.user_list = []
        self.module_list = []
        self.nb_images = 0
        self.nb_users = 0
        self.ml_out_dir = ml_out_dir

        # load ImageData objects from files
        if image_list is None:
            bar = ChargingBar('Loading Image Data',
                              max=len(images),
                              stream=sys.stdout)
        else:
            bar = ChargingBar('Loading Image Data',
                              max=len(image_list),
                              stream=sys.stdout)
        bar.start()
        for image in images:
            id = image.split('_')[1]
            if image.startswith("image") and (image_list is None
                                              or id in image_list):
                self.image_list.append(
                    image_data.Image_data(project_name, image, self,
                                          user_list))
                self.nb_images += 1
                bar.next()
        bar.finish()
        #map_array = []
        #for image in images:
        #    if image.startswith("image"):
        #        map_array.append((project_name, image, self))
        #        self.nb_images += 1
        #self.image_list = parallelize_image_init(map_array)

        # load UserData objects from files
        print "Loading user data to memory..."
        f = open(config.WORKING_DIRECTORY + project_name + user_dir, 'rb')
        csv_in = csv.reader(f)
        data = list(csv_in)
        for i in range(2, len(data)):
            y_vars = {}
            m_vars = {}
            x_vars = {}
            for j in range(len(data[i])):
                if data[0][j] == 'M':
                    m_vars[data[1][j]] = data[i][j]
                elif data[0][j] == 'Y':
                    y_vars[data[1][j]] = data[i][j]
                elif data[0][j] == 'X':
                    x_vars[data[1][j]] = data[i][j]
            if user_list is None or m_vars['CYTOMINE ID'] in user_list:
                u = user_data.User_data(self.image_list, m_vars['CYTOMINE ID'],
                                        self, y_vars, m_vars, x_vars)
                self.user_list.append(u)
                self.nb_users += 1

        f.close()
        for image in self.image_list:
            image.init_user_data_link(self.user_list)

        dir_l = os.listdir(config.WORKING_DIRECTORY + project_name + "/")
        mod_name = config.WORKING_DIRECTORY + project_name + "/timeline.csv"
        if "timeline.csv" in dir_l:
            f = open(mod_name, 'rb')
            csv_in = csv.reader(f)
            data = list(csv_in)
            for i in range(1, len(data)):
                row = data[i]
                m = module_data.Module_data(row, self.image_list, self,
                                            self.user_list)
                self.module_list.append(m)
            f.close()
Esempio n. 8
0
            if args.output:
                csv_file = open(args.output, 'w', newline='')
                csv_writer = csv.writer(csv_file, delimiter=' ', quotechar='|', quoting=csv.QUOTE_MINIMAL)

                config = yaml.safe_load(read_file(args.config))
                print(f'Config loaded from {args.config}')

                engine = create_engine(config['mysql'])

                print(f'Processing...')
                stores = config['stores']
                barcodes = config['barcodes']
                periods = config['periods']
                iter_cnt = len(stores) * len(barcodes) * len(periods)
                bar = ChargingBar('Waiting...', max=iter_cnt)
                bar.start()

                for s in range(len(stores)):
                    store_id = stores[s]

                    for b in range(len(barcodes)):
                        barcode = barcodes[b]
                        bar.message = f'[Store: {store_id}] {str(barcode).ljust(13, " ")}'
                        bar.update()

                        df_barcode = get_barcode_daily_sales(engine, store_id, barcode)

                        for plot in range(len(periods)):
                            period = periods[plot]
                            today = arrow.get(period['date'], 'DD.MM.YYYY')
                            beg = today.shift(days=1)