Esempio n. 1
0
def combine_counts(a, b, mod):
    n = a.size
    if n == 2:
        return np.array([a[0]*b[0]+a[1]*b[1], a[0]*b[1]+b[0]*a[1]]) % mod
    elif n == 1:
        return (a*b) % mod
    a %= mod
    b %= mod
    pivot = n/2
    u = combine_counts(a[:pivot]+a[pivot:], b[:pivot]+b[pivot:], mod)
    v = combine_counts(a[:pivot]-a[pivot:], b[:pivot]-b[pivot:], mod)

    res = np.zeros(n, dtype = a.dtype)
    res[:pivot] = ((u + v) * pe.mod_inv(2, mod)) % mod
    res[pivot:] = ((u - v) * pe.mod_inv(2, mod)) % mod
    return res
Esempio n. 2
0
def solve(n):
    primes = np.array(pe.primes_and_mask(n)[0], dtype = np.int64)
    pi = len(primes)
    #product of first k primes mod p, for each prime
    mod_prods = 2*np.ones(pi, dtype=np.int64)
    a_mods = np.ones(pi, dtype = np.int64)
    #a_0 is 0, I guess
    a = 1
    mask = primes == -1

    for i in xrange(1, pi):
        #we want to find the smallest k with k*p_1*...*p_i + A_i = t*p_(i+1) + (i+1)
        #solving this equation mod p_(i+1) for k yields the answer
        p = primes[i]
        k = ((i+1 - a_mods[i]) * pe.mod_inv(mod_prods[i], p)) % p
        a_mods[i:] = (a_mods[i:] + k*mod_prods[i:]) % primes[i:]
        mod_prods[i:] *= p
        mod_prods[i:] %= primes[i:]
        mask[a_mods==0] = True
    print np.sum(primes[mask])