def profile_by_seq_len(nloop=100): for _l in [3, 7, 10, 30, 60, 120]: drone, targets = pmu.make_random_scenario(_l) _start = time.perf_counter() for i in range(nloop): pm.intercept_sequence_copy(drone, targets) _end = time.perf_counter() dt = _end - _start ips = nloop / dt print(f'{_l}: {dt:.1f} s {ips:.0f} seq/s')
def test2(filename='../../data/scenario_60_6.yaml', ntest=100): scen = pmu.Scenario(filename=filename) s = pm_cpp_ext.Solver() s.init(scen.drone, scen.targets) for i in range(ntest): seq = np.random.permutation(scen.targets).tolist() _seq = [_s.name - 1 for _s in seq] #print(_seq) c_dur = s.run_sequence(_seq) c_psis = s.debug() py_drone, py_dur = pm.intercept_sequence_copy(scen.drone, seq) #pdb.set_trace() c_psis1 = [pmu.norm_angles_mpi_pi(_psi) for _psi in c_psis] p_psis1 = [pmu.norm_angles_mpi_pi(_psi) for _psi in py_drone.psis] #passed1 = np.allclose(c_psis1, p_psis1, rtol=1e-02, atol=1e-03) # rtol=1e-05, atol=1e-08 passed1 = np.allclose(c_psis1, p_psis1, rtol=1e-03, atol=1e-08) # rtol=1e-05, atol=1e-08 #passed1 = np.allclose(c_psis, py_drone.psis, rtol=1e-05, atol=1e-06) # rtol=1e-05, atol=1e-08 passed2 = np.allclose(c_dur, py_dur, rtol=1e-05, atol=1e-06) print(f'Test passed: {passed1} {passed2}') if not passed1: #print(f'{c_psis} \n{py_drone.psis}') for i in range(nb_tg): if abs(c_psis[i] - py_drone.psis[i]) > 1e-5: print(f'failed idx {i} {c_psis1[i]} {p_psis1[i]}') print([_s.name for _s in seq]) if not passed2: print(f'durations (c/py): {c_dur}, {py_dur}')
def plot_solution(fig, ax, scen, sol_name): seq = scen.solution_by_name(sol_name)[2] drone, dur = pm.intercept_sequence_copy(scen.drone, seq) #print(f'recomputed {format_seq(seq)} {dur:.2f} ') drone_poss = np.asarray(drone.Xs) ax.plot(drone_poss[:, 0], drone_poss[:, 1], '-X') for _target, _t in zip(seq, drone.ts[1:]): plot_actor(ax, _target, dt=_t) decorate(ax, f'{scen.name}/{sol_name} ({dur:.2f} s)') ax.axis('equal')
def anim_scens(show_opt=True, show_heu=True, show_hist=True, _fs=3.84): _scens = [make_or_load_scenario(_i) for _i in [0, 1, 2, 3]] #_scens = [make_or_load_scenario(_i) for _i in [4, 5, 6, 7]] #_scens = [make_or_load_scenario(_i) for _i in [8, 9]] #_scens = [make_or_load_scenario(_i) for _i in [10, 11]] _sols = [_3 for _1, _2, _3 in _scens] drones, targets = [], [] if show_opt: for _d, _t, _s in _scens: best_dur, best_seq = pmu.sol_by_name(_s, 'optimal') if best_seq is not None: best_drone, best_dur = pm.intercept_sequence_copy(_d, best_seq) else: best_drone, best_seq = pm.search_exhaustive(_d, _t) drones.append(best_drone), targets.append(best_seq) if show_heu: for _d, _t, _s in _scens: test_dur, test_seq = pmu.sol_by_name(_s, 'heuristic') if test_seq is not None: test_drone, test_dur = pm.intercept_sequence_copy(_d, test_seq) else: test_drone, test_seq = search_heuristic_closest(_d, _t) drones.append(test_drone), targets.append(test_seq) _nr, _nc = np.sum([show_opt, show_heu, show_hist]), len(_scens) titles = [f'scenario {_i}_opt' for _i in range(_nc) ] + [f'scenario {_i}_heur' for _i in range(_nc)] fig = plt.figure(tight_layout=True, figsize=[_fs * _nc, _fs * _nr]) axes = fig.subplots(_nr, _nc) #, sharex=True) if show_hist: _titles = [f'scenario {_i} histogram' for _i in range(_nc)] for (_d, _t, _s), _title, _ax in zip(_scens, _titles, axes[2, :]): plot_histogram(fig, _ax, _d, _t, _title) return pma.animate_multi(fig, axes.flatten(), drones, targets, titles, xlim=(-150, 150), ylim=(-150, 150))
def compare_with_optimal(scen): try: name, opt_dur, opt_seq = scen.solution_by_name('optimal') opt_drone, _ = pm.intercept_sequence_copy(scen.drone, opt_seq) except KeyError: opt_drone, opt_seq = pm.search_exhaustive(scen.drone, scen.targets) opt_dur = opt_drone.flight_duration() try: name, heur_dur, heur_seq = scen.solution_by_name('heuristic') heur_drone, _ = pm.intercept_sequence_copy(scen.drone, heur_seq) except KeyError: heur_drone, heur_seq = pm_t3.search_heuristic_closest( scen.drone, scen.targets) heur_dur = heur_drone.flight_duration() print(f'optimal {opt_dur:.1f} s heuristic {heur_dur:.1f} s') fig = plt.figure(tight_layout=True, figsize=[10.24, 5.12]) ax1, ax2 = fig.subplots(1, 2, sharex=True) return pma.animate_multi(fig, [ax1, ax2], [opt_drone, heur_drone], [opt_seq, heur_seq], ['Optimal', 'Heuristic'])
def animate_solutions(scen, names, tf=1., window_title=None, _size=3.84): sols = [scen.solution_by_name(name) for name in names] seqs = [_seq for _1, _2, _seq in sols] drones = [pm.intercept_sequence_copy(scen.drone, _seq)[0] for _seq in seqs] _n = len(names) fig = plt.figure(tight_layout=True, figsize=[_size * _n, _size]) if window_title is not None: fig.canvas.set_window_title(window_title) axes = fig.subplots(1, _n) #, sharex=True) if _n == 1: axes = [axes] titles = [f'{window_title}/{_n}' for _n in names] return animate_fig(fig, axes, drones, seqs, titles, tf=tf)
def search_exhaustive(drone, targets, keep_all=False, display=False): perms = set(itertools.permutations(targets)) if display: print( f'exhaustive search for {len(targets)} targets ({len(perms)} sequences)' ) best_dur, best_drone, best_targets, all_drones, all_targets = float( 'inf'), None, None, [], [] for _seq in perms: _drone, _dur = pm.intercept_sequence_copy(drone, _seq) if _dur < best_dur: best_dur, best_drone, best_targets = _dur, _drone, _seq if keep_all: all_drones.append(_drone) all_targets.append(_seq) if display: print(f'optimal seq {best_dur:.02f}s {format_seq(best_targets)}') return (all_drones, all_targets) if keep_all else (best_drone, best_targets)
def test22(filename='../../data/scenario_60_6.yaml'): #seq = [30, 47, 12, 20, 39, 36, 28, 29, 18, 2, 41, 24, 35, 54, 58, 23, 53, 11, 4, 15, 10, 9, 34, 43, 44, 45, 42, 14, 37, 17, 19, 52, 8, 33, 48, 27, 56, 5, 55, 21, 59, 26, 40, 50, 49, 7, 22, 31, 38, 25, 57, 32, 3, 60, 6, 13, 51, 46, 16, 1] seq = [ 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17 ] scen = pmu.Scenario(filename=filename) s = pm_cpp_ext.Solver() s.init(scen.drone, scen.targets) py_seq = [scen.targets[_n - 1] for _n in seq] py_drone, py_dur = pm.intercept_sequence_copy(scen.drone, py_seq) print(f'{py_dur}') c_drone, c_dur = s.intercept_sequence_copy(scen.drone, py_seq) print(f'{c_dur}') pdb.set_trace()
def search(drone, targets, start_seq=None, epochs=1000, debug=False, Tf=None, display=0, T0=2., use_native=False): solver = pm_cpp_ext.Solver(drone, targets) if use_native else pm if display > 0: print( f'running simulated annealing with {len(targets)} targets for {epochs:.1e} epochs' ) print( f' ({epochs/np.math.factorial(len(targets)):.2e} search space coverage)' ) print(' custom temperature control' if Tf is not None else f' default linear temperature (T0={T0})') if start_seq is None: start_seq = np.random.permutation(targets).tolist() start_drone, start_dur = pm.intercept_sequence_copy(drone, start_seq) best_drone, cur_drone = start_drone, start_drone best_seq = cur_seq = start_seq best_dur = cur_dur = start_dur if display > 0: print(f' start solution') _print_sol(0, T0, best_dur, cur_dur, cur_seq) if display > 1: last_display = time.perf_counter() if Tf is None: Tf = lambda i: _f1(T0, 0, 1e-2, 0.8 * epochs, i) if debug: all_durs, cur_durs, Paccept, max_durs = (np.zeros(epochs) for i in range(4)) for i in range(epochs): T = Tf(i) _r = np.random.uniform(low=0, high=1.) max_dur = cur_dur + T * np.log(_r) _s2 = _mutate(cur_seq) # BROKEN!! _d2, _dur = solver.intercept_sequence_copy_threshold(drone, _s2, max_dur) _d2, _dur = solver.intercept_sequence_copy(drone, _s2) acc_prob = np.exp( -(_dur - cur_dur) / T ) if _dur > cur_dur else 0. # warning 1, but 0 looks nicer on plot if debug: max_durs[i] = max_dur all_durs[i] = _dur Paccept[i] = acc_prob if _dur < best_dur: best_dur, best_drone, best_seq = _dur, _d2, _s2 if _dur < cur_dur or _r <= acc_prob: cur_dur, cur_drone, cur_seq = _dur, _d2, _s2 if display > 1 and time.perf_counter() - last_display > 1.: _print_sol(i, T, best_dur, cur_dur, cur_seq) last_display = time.perf_counter() if debug: cur_durs[i] = cur_dur if display > 0: print(f' best solution') _print_sol(i, T, best_dur, cur_dur, cur_seq) if debug: return best_drone, best_seq, all_durs, cur_durs, Paccept, max_durs else: return best_drone, best_seq
def main(filename, method='sa3', max_epoch=10000, sol_name=None, save_filename=None, overwrite=False, show=False, T0=2., start_sol_name=None): scen = pm_sc.Scenario(filename=filename) _start = time.perf_counter() _neval = max_epoch if method == 'ex': # exhaustive _neval = np.math.factorial(len(scen.targets)) _drone, _seq = pmu.search_exhaustive(scen.drone, scen.targets, keep_all=False, display=True) elif method == 'ex2': # exhaustive native _neval = np.math.factorial(len(scen.targets)) _drone, _seq = pm_nc.search_exhaustive(scen.drone, scen.targets) elif method == 'he': # heuristic_closest _drone, _seq = pmu.search_heuristic_closest(scen.drone, scen.targets) elif method == 'sa': # simulated annealing start_seq = scen.solution_by_name( start_sol_name)[2] if start_sol_name is not None else None _drone, _seq = pm_sa.search(scen.drone, scen.targets, epochs=max_epoch, display=2, T0=T0, use_native=False, start_seq=start_seq) elif method == 'sa2': # simulated annealing hybrid native start_seq = scen.solution_by_name( start_sol_name)[2] if start_sol_name is not None else None _drone, _seq = pm_sa.search(scen.drone, scen.targets, epochs=max_epoch, display=2, T0=T0, use_native=True, start_seq=start_seq) elif method == 'sa3': # simulated annealing full native start_seq = scen.solution_by_name( start_sol_name)[2] if start_sol_name is not None else None _drone, _seq = pm_nc.search_sa(scen.drone, scen.targets, start_seq, max_epoch, T0) else: print('unknown search method') _end = time.perf_counter() cpu_dur = _end - _start eval_per_sec = _neval / cpu_dur print( f'{sol_name}: {_drone.flight_duration():.2f}s (computed in {datetime.timedelta(seconds=cpu_dur)} h:m:s, {eval_per_sec:.0f} ev/s)' ) check = False # FIXME: move this to unit test if check: _drone2, _dur2 = pm.intercept_sequence_copy(scen.drone, _seq) if _dur2 != _drone2.flight_duration() or\ not np.allclose([_dur2], [_drone.flight_duration()]): # python and C did not recompute same duration for sequence print('#### search.py: check failed FIXME ####') print(f'{_dur2} {_drone.flight_duration()}') pdb.set_trace() scen.add_solution(sol_name, _drone.flight_duration(), _seq) if save_filename is not None: scen.save(save_filename) if overwrite: scen.save(filename) if show: pmu.plot_solutions(scen, [sol_name], filename)