Esempio n. 1
0
    else:
        filtered_learner = Orange.feature.selection.FilteredLearner(
            learner,
            filter=Orange.feature.selection.FilterBestN(n=filter),
            name='filtered')
        classifier = filtered_learner(data)

    return classifier


if __name__ == "__main__":
    if len(sys.argv) != 4:
        print >> sys.stderr, "Usage: classify.py [TAB_FILE] [classifier: tree, bayes, svm, logreg] [number to filter, 0 -> no filtering]"
        sys.exit(1)

    data = proj_utils.load_data(sys.argv[1])
    type = sys.argv[2]
    features = int(sys.argv[3])

    train_data, test_data = proj_utils.partition_data(data)

    model = train_classifier(train_data, type, features)
    train_CA, train_results = proj_utils.test_classifier(model, train_data)
    test_CA, test_results = proj_utils.test_classifier(model, test_data)

    #print "Train Accuracy: %f, Test Accuracy: %f" % (train_CA, test_CA)
    train_stats = proj_utils.get_stats(train_results)
    test_stats = proj_utils.get_stats(test_results)

    print "Train:\n%s" % str(train_stats)
    print "\nTest:\n%s" % str(test_stats)
Esempio n. 2
0
		exit()
		
	if filter == 0:
		classifier = learner(data)
	else:
		filtered_learner = Orange.feature.selection.FilteredLearner(learner, filter=Orange.feature.selection.FilterBestN(n=filter), name='filtered')
		classifier = filtered_learner(data)
		
	return classifier

if __name__ == "__main__":
    if len(sys.argv) != 4:
        print >> sys.stderr, "Usage: classify.py [TAB_FILE] [classifier: tree, bayes, svm, logreg] [number to filter, 0 -> no filtering]"
        sys.exit(1)

    data = proj_utils.load_data(sys.argv[1])
    type = sys.argv[2]
    features = int(sys.argv[3])

    train_data, test_data = proj_utils.partition_data(data)

    model = train_classifier(train_data, type, features)
    train_CA, train_results = proj_utils.test_classifier(model, train_data)
    test_CA, test_results = proj_utils.test_classifier(model, test_data)

    #print "Train Accuracy: %f, Test Accuracy: %f" % (train_CA, test_CA)
    train_stats = proj_utils.get_stats(train_results)
    test_stats = proj_utils.get_stats(test_results)

    print "Train:\n%s" % str(train_stats)
    print "\nTest:\n%s" % str(test_stats)