Esempio n. 1
0
def get_normalized_in_degree_distr(graph):
    """
    :param graph:
    :return:
    """
    size = len(graph.keys())
    degree_distr = in_degree_distribution(graph)

    normalized = {}
    for degree in degree_distr:
        normalized[degree] = degree_distr[degree]/float(size)
    return normalized
Esempio n. 2
0
    """
    extract a dpa graph
    :param number_total_nodes: total n nodes
    :param number_init_nodes: a initial graph with m nodes
    :return: a dictionary of a dpa graph
    """
    graph_pool = dpat(number_init_nodes)
    output_graph = pj1.make_complete_graph(number_init_nodes)
    for new_node in range(number_init_nodes, number_total_nodes):
        neighbor_nodes = graph_pool.run_trial(number_init_nodes)
        output_graph[new_node] = neighbor_nodes
    
    return output_graph

dpa_graph = get_dpa_graph(27770, 13)
id_distribution_dpa = pj1.in_degree_distribution(dpa_graph)

nor_id_distribution_dpa = pj1.normalization(id_distribution_dpa)
#print nor_citation_distribution

fig, ax = plt.subplots()
input_data = [[key, nor_id_distribution_dpa[key]] for key in nor_id_distribution_dpa.keys()]
input_data.sort()

input_x = [component[0] for component in input_data]
input_y = [component[1] for component in input_data]

ax.plot(input_x, input_y)
ax.set_title('normalized distribution of DPA')
ax.set_xscale('log')
ax.set_yscale('log')
Esempio n. 3
0
    :param prob: probability
    :return: dictionary undirected graph which nodes are generated randomly
    """
    graph_idd = {}
    for node_i in xrange(node_number):
        value = []
        for node_j in xrange(node_number):
            if node_i != node_j:
                random_prob = random.random()
                if random_prob < prob:
                    value.append(node_j)
        graph_idd[node_i] = value
    return graph_idd


er_distribution = pj1.in_degree_distribution(er_algorithm(1000, 0.5))
nor_er_distribution = pj1.normalization(er_distribution)

fig, ax = plt.subplots()
input_data = [[key, nor_er_distribution[key]] for key in nor_er_distribution.keys()]
input_data.sort()

input_x = [component[0] for component in input_data]
input_y = [component[1] for component in input_data]

ax.plot(input_x, input_y)
ax.set_title('Distribution of ER algorithm (1000 nodes, prob is 0.5)')
#ax.set_xscale('log')
#ax.set_yscale('log')

plt.show()