Esempio n. 1
0
def blackbox(args):
    if global_state.target is None:
        error_prompt('You have first to set a target.')
        return

    if args.type is None:
        error_prompt('You have to set an attack type.')
        error_prompt(f'Chose from this list: {BYTE_ATTACKS + GAMMA_ATTACKS}')
        return

    if args.inject is None:
        if args.type != PARTIAL_DOS:
            error_prompt('You have to set an injection amount.')
            return
        else:
            args.inject = 58

    if 'gamma' in args.type:
        if args.goodware_folder is None:
            if global_state.goodware_folder is None:
                error_prompt(
                    'GAMMA needs to harvest samples from goodware, set --goodware_folder.'
                )
                return
            args.goodware_folder = global_state.goodware_folder

    args.model = create_wrapper_for_global_target()
    attack = create_byte_based_black_box_attack(
        args) if 'gamma' not in args.type else create_gamma_black_box_attack(
            args)

    global_state.attack = attack

    success_prompt(f'Set up attack: {args.type}')
Esempio n. 2
0
def data(args):
    path = args.path
    if path is None:
        error_prompt('You have to set a path to a file or folder.')
        return
    if not os.path.isfile(path) and not os.path.isdir(path):
        error_prompt('{path} does not point to a file or folder.')
        return
    if args.goodware:
        if os.path.isdir(args.path):
            global_state.goodware_folder = args.path
            success_prompt('Goodware folder path correctly loaded!')
            return
        error_prompt(
            "Goodware must be specified as a folder, not single files!")
        return
    if os.path.isfile(path):
        file_list = [path]
    else:
        file_list = sorted([os.path.join(path, f) for f in os.listdir(path)])
    if args.magic:
        file_list = [f for f in file_list if args.magic in magic.from_file(f)]
    if args.contains is not None:
        file_list = [f for f in file_list if args.contains in f]
    if args.remove is not None:
        file_list = [f for f in file_list if args.remove not in f]
    if args.limit is not None:
        limit = int(args.limit)
        file_list = file_list[:limit]
    global_state.data_paths = file_list
    success_prompt('File path correctly loaded!')
Esempio n. 3
0
def print_run_results(stats):
	separator_prompt()
	success_prompt('Adversarial attack concluded!')
	success_prompt(f'# Evasions: {stats["evasion"]} / {stats["total"]}')
	success_prompt(f'Detection Rate: {(1 - stats["evasion"] / stats["total"]) * 100} %')
	success_prompt(f'Mean Original Score: {stats["before_score"] / stats["total"]}')
	success_prompt(f'Mean Adv Score: {stats["adv_score"] / stats["total"]}')
Esempio n. 4
0
def whitebox_attack(output_path=None):
	stats = _create_stats()
	for file_path in global_state.data_paths:
		with open(file_path, 'rb') as handle:
			bytecode = handle.read()
		net: CClassifierEnd2EndMalware = global_state.target
		attack: CEnd2EndMalwareEvasion = global_state.attack
		x = End2EndModel.bytes_to_numpy(bytecode, net.get_input_max_length(), net.get_embedding_value(),
										net.get_is_shifting_values())
		x = CArray(x).atleast_2d()
		y = CArray([1])
		try:
			adv_ds = _perform_optimization(attack, file_path, stats, x, y)
			if output_path is not None:
				name = os.path.basename(file_path)
				new_path = os.path.join(output_path, name + '_adv')
				attack.create_real_sample_from_adv(file_path, adv_ds.X[0, :], new_path)
				success_prompt(f'Adv malware created at {new_path}')

		except Exception as e:
			crash_prompt("Damn, something went wrong!")
			crash_prompt(f"Exception details: {e}")
			raise e

	print_run_results(stats)
Esempio n. 5
0
def run(args):
	if global_state.target is None:
		error_prompt('You must first set a target to attack (`target` command).')
		return
	if global_state.attack is None:
		error_prompt('You must first set an attack strategy (`whitebox` or `blackbox` commands).')
		return
	if global_state.data_paths is None:
		error_prompt('You must first set which samples to use (`data` command).')
		return
	if not strategy_check():
		return
	if args.output is not None:
		if not os.path.isdir(args.output):
			os.mkdir(args.output)
			success_prompt(f'Folder {args.output} created!')

	if isinstance(global_state.attack, CEnd2EndMalwareEvasion):
		whitebox_attack(args.output)
	elif isinstance(global_state.attack, CBlackBoxProblem):
		blackbox_attack(args.output)
Esempio n. 6
0
def do_set_atk(args):
    if global_state.attack is None:
        error_prompt('You must first define an attack to set its parameters.')
        return
    atk = global_state.attack
    if isinstance(atk, CEnd2EndMalwareEvasion):
        if args.key in wb_atk_map:
            atk_type = type(global_state.attack)
            if atk_type.__name__ not in wb_atk_map[args.key]:

                if not hasattr(atk, args.key):
                    error_prompt(f'Key {args.key} not defined for object.')
                    error_prompt(f'You can set: {wb_atk_map.keys()}.')

                setattr(atk, args.key, args.value)
                success_prompt(f'Correctly set {args.key} <- {args.value}')
            else:
                setattr(atk, wb_atk_map[args.key][atk_type.__name__],
                        args.value)
                success_prompt(f'Correctly set "{args.key}" to {args.value}')
        else:
            error_prompt(
                f'Unable to set "{args.key}". Key not found or not-editable from here.'
            )
    elif isinstance(atk, CBlackBoxProblem):
        if args.key in bb_atk_map:
            atk_type = type(global_state.attack)
            setattr(atk, bb_atk_map[args.key], args.value)
            success_prompt(f'Correctly set {args.key} <- {args.value}')
        else:
            error_prompt(
                'Unable to set {args.key}. Key not found or not-editable from here.'
            )
Esempio n. 7
0
def blackbox_attack(output_path=None):
	engine = CGeneticAlgorithm(global_state.attack)
	stats = _create_stats()
	for fp in global_state.data_paths:
		with open(fp, 'rb') as handle:
			code = handle.read()
		x = CArray(np.frombuffer(code, dtype=np.uint8)).atleast_2d()
		y = CArray([1])
		try:
			adv_ds = _perform_optimization(engine, fp, stats, x, y)
			if output_path is not None:
				name = os.path.basename(fp)
				new_path = os.path.join(output_path, name + '_adv')
				engine.write_adv_to_file(adv_ds.X[0, :], path=new_path)
				success_prompt(f'Adv malware created at {new_path}')

		except Exception as e:
			crash_prompt("Damn, something went wrong!")
			crash_prompt(f"Exception details: {e}")
			raise e

	print_run_results(stats)
Esempio n. 8
0
def whitebox(args):
    if global_state.target is None:
        error_prompt('You have first to set a target.')
        return

    if args.type is None:
        error_prompt('You have to set an attack type.')
        error_prompt(f'Chose from this list: {BYTE_ATTACKS}')
        return

    if args.inject is None:
        if args.type != PARTIAL_DOS:
            error_prompt('You have to set an injection amount.')
            return
        else:
            args.inject = 58

    args.net = global_state.target
    attack = create_correct_whitebox_attack(args)

    global_state.attack = attack

    success_prompt(f'Set up attack: {args.type}')
Esempio n. 9
0
def predict(args):
    if global_state.target is None:
        error_prompt('First you need to set a target.')
        return
    if args.path is None:
        if global_state.data_paths is None:
            error_prompt('You have to give an input path.')
            return
        paths = global_state.data_paths
    elif not os.path.isfile(args.path):
        error_prompt(f'{args.path} does not exists.')
        return
    else:
        paths = [args.path]
    net = create_wrapper_for_global_target()

    stats = {
        'detected': 0,
        'total': 0,
        'confidence': 0,
    }

    for p in paths:
        with open(p, 'rb') as handle:
            code = handle.read()
        info_prompt(f'Computing prediction for {p}')
        code = CArray(np.frombuffer(code, dtype=np.uint8)).atleast_2d()
        y_pred, confidence = net.predict(code, return_decision_function=True)
        y_pred = y_pred.item()
        score = confidence[0, 1].item()
        stats['detected'] += int(y_pred != 0)
        stats['total'] += 1
        stats['confidence'] += score
        info_prompt(f'predicted label: {y_pred}')
        info_prompt(f'confidence: {score}')
        print('-' * 20)
    if stats['total'] >= 1:
        separator_prompt()
        success_prompt('Prediction stats:')
        success_prompt(f'Detected: {stats["detected"]} / {stats["total"]}')
        success_prompt(
            f'Detection Rate: {stats["detected"] / stats["total"] * 100} %')
        success_prompt(
            f'Mean confidence: {stats["confidence"] / stats["total"]}')
Esempio n. 10
0
def clear():
	global_state.reset()
	success_prompt("everything has been reset!")