Esempio n. 1
0
def check_sampling(wf, tstep, location, line_info, units=None):
    """
    checks the sampling of the wavefront at the given location and prints to console

    mostly reformats the output of proper.prop_get_sampling into human-readable format

    :param wf: wavefront object
    :param tstep: timestep, will only check for first timestep, so when tstep==0
    :param location: string that identifies where call is being made
    :param line_info: info on the line number and function name from where check_sampling was called
        example: getframeinfo(stack()[0][0])
        via: from inspect import getframeinfo, stack
    :param units: desired units of returned print statement; options are 'mm,'um','nm','arcsec','rad'
    :return: prints sampling to the command line
    """
    if tstep == 0 and wf.ib == 0:
        if wf.iw == 0:
            print(f"\nFrom {line_info.filename}:{line_info.lineno}\n Sampling at {location}")

        check_sampling = proper.prop_get_sampling(wf)
        if units == 'mm':
            print(f"sampling at wavelength={wf.lamda * 1e9:.0f}nm is {check_sampling*1e3:.4f} mm")
        elif units == 'um':
            print(f"sampling at wavelength={wf.lamda * 1e9:.0f}nm is {check_sampling*1e6:.1f} um")
        elif units == 'nm':
            print(f"sampling at wavelength={wf.lamda * 1e9:.0f}nm is {check_sampling*1e9:.1f} nm")
        elif units == 'arcsec':
            check_sampling = proper.prop_get_sampling_arcsec(wf)
            print(f"sampling at wavelength={wf.lamda * 1e9:.0f}nm is {check_sampling*1e3:.2f} mas")
        elif units == 'rad':
            check_sampling = proper.prop_get_sampling_radians(wf)
            print(f"sampling at wavelength={wf.lamda * 1e9:.0f}nm is {check_sampling:.3f} rad")
        else:
            print(f"sampling at wavelength={wf.lamda * 1e9:.0f}nm is {check_sampling} m")
Esempio n. 2
0
def scale_lD(wfo, newsize=None):
    """
    scales the focal plane into lambda/D units. First convert the sampling in m/pix to rad/pix, then scale by the
     center wavelength lambda/D [rad].

    :param wfo: proper wavefront object
    :return:
    """
    samp = proper.prop_get_sampling(wfo)
    fn = proper.prop_get_fratio(wfo)
    bd = wfo.diam
    lmda = wfo.lamda
    if newsize is None:
        size = wfo.ngrid
    else:
        size = newsize

    # Convert to Angular Sampling Units via platescale
    fl = fn * bd
    rad_scale = samp / fl

    res = lmda / bd

    tic_spacing = np.linspace(0, size, 5)  # 5 (number of ticks) is set by hand, arbitrarily chosen
    tic_labels = np.round(np.linspace(-rad_scale * size / 2 , rad_scale * size / 2 , 5)/res)  # nsteps must be same as tic_spacing
    tic_spacing[0] = tic_spacing[0] + 1  # hack for edge effects
    tic_spacing[-1] = tic_spacing[-1] - 1  # hack for edge effects

    axlabel = (r'$\lambda$' + f'/D')

    return tic_spacing, tic_labels, axlabel
Esempio n. 3
0
    def save_plane(self, location=None):
        """
        Saves the complex field at a specified location in the optical system. If the function is called by
        wfo.loop_collection, the plane is saved AFTER the function is applied

        Note that the complex planes saved are not summed by object, interpolated over wavelength, nor masked down
        to the sp.maskd_size.

        :param location: name of plane where field is being saved
        :return: self.save_E_fields
        """
        if sp.verbose:
            dprint(f"saving plane at {location}")

        if location is not None and location in sp.save_list:
            E_field = np.zeros(
                (1, np.shape(self.wf_collection)[0],
                 np.shape(self.wf_collection)[1], sp.grid_size, sp.grid_size),
                dtype=np.complex64)
            samp_lambda = np.zeros(ap.n_wvl_init)

            for iw, sources in enumerate(self.wf_collection):
                samp_lambda[iw] = proper.prop_get_sampling(
                    self.wf_collection[iw, 0])
                for io, wavefront in enumerate(sources):
                    wf = proper.prop_shift_center(wavefront.wfarr)
                    E_field[0, iw, io] = copy.copy(wf)

            self.Efield_planes = np.vstack((self.Efield_planes, E_field))
            self.saved_planes.append(location)
            self.plane_sampling.append(samp_lambda)
Esempio n. 4
0
def gen_cached_name(label, wfo):
    prefix = 'cached'
    # Most of the cacheable steps depend upon wfo for:
    ngrid = proper.prop_get_gridsize(wfo)
    beamradius = proper.prop_get_beamradius(wfo)
    sampling = proper.prop_get_sampling(wfo)
    return '{}_{}_{}_{}_{}.npy'.format(prefix, label, ngrid, sampling,
                                       beamradius)
Esempio n. 5
0
def coronagraph(wfo, f_lens, occulter_type, diam):
    
    proper.prop_lens(wfo, f_lens, "coronagraph imaging lens")
    proper.prop_propagate(wfo, f_lens, "occulter")
    
    # occulter sizes are specified here in units of lambda/diameter;
    # convert lambda/diam to radians then to meters
    lamda = proper.prop_get_wavelength(wfo)
    occrad = 4.                           # occulter radius in lam/D
    occrad_rad = occrad * lamda / diam    # occulter radius in radians
    dx_m = proper.prop_get_sampling(wfo)
    dx_rad = proper.prop_get_sampling_radians(wfo)    
    occrad_m = occrad_rad * dx_m / dx_rad  # occulter radius in meters

    plt.figure(figsize=(12,8))
        
    if occulter_type == "GAUSSIAN":
        r = proper.prop_radius(wfo)
        h = np.sqrt(-0.5 * occrad_m**2 / np.log(1 - np.sqrt(0.5)))
        gauss_spot = 1 - np.exp(-0.5 * (r/h)**2)
        proper.prop_multiply(wfo, gauss_spot)
        plt.suptitle("Gaussian spot", fontsize = 18)
    elif occulter_type == "SOLID":
        proper.prop_circular_obscuration(wfo, occrad_m)
        plt.suptitle("Solid spot", fontsize = 18)
    elif occulter_type == "8TH_ORDER":
        proper.prop_8th_order_mask(wfo, occrad, CIRCULAR = True)
        plt.suptitle("8th order band limited spot", fontsize = 18)
        
    # After occulter
    plt.subplot(1,2,1)
    plt.imshow(np.sqrt(proper.prop_get_amplitude(wfo)), origin = "lower", cmap = plt.cm.gray)
    plt.text(200, 10, "After Occulter", color = "w")
        
    proper.prop_propagate(wfo, f_lens, "pupil reimaging lens")  
    proper.prop_lens(wfo, f_lens, "pupil reimaging lens")
    
    proper.prop_propagate(wfo, 2*f_lens, "lyot stop")

    plt.subplot(1,2,2)        
    plt.imshow(proper.prop_get_amplitude(wfo)**0.2, origin = "lower", cmap = plt.cm.gray)
    plt.text(200, 10, "Before Lyot Stop", color = "w")
    plt.show()   
    
    if occulter_type == "GAUSSIAN":
        proper.prop_circular_aperture(wfo, 0.25, NORM = True)
    elif occulter_type == "SOLID":
        proper.prop_circular_aperture(wfo, 0.84, NORM = True)
    elif occulter_type == "8TH_ORDER":
        proper.prop_circular_aperture(wfo, 0.50, NORM = True)
    
    proper.prop_propagate(wfo, f_lens, "reimaging lens")
    proper.prop_lens(wfo, f_lens, "reimaging lens")
    
    proper.prop_propagate(wfo, f_lens, "final focus")
    
    return
Esempio n. 6
0
def add_atmos(wfo, f_lens, w, atmos_map, correction=False):
    # print 'Including Atmospheric Aberations'
    # rms_error = 5e-9#500.e-9       # RMS wavefront error in meters
    # c_freq = 5e9             # correlation frequency (cycles/meter)
    # high_power = 8.          # high frewquency falloff (r^-high_power)
    # print atmos_map, 'here'
    samp = proper.prop_get_sampling(wfo) * tp.band[0] * 1e-9 / w
    # samp = 0.125 # from caos ATM GUI: ((r0 sampling [px/r0]) /r0)*0.1
    # print samp
    dprint(atmos_map)
    try:
        # rawImageIO.scale_image(atmos_map, 1e6)
        obj_map = proper.prop_errormap(
            wfo,
            atmos_map,
            MULTIPLY=1.0,
            WAVEFRONT=True,
            MAP="obj_map",
            SAMPLING=tp.samp)  # )##FILE='telescope_objtest.fits'
        # quicklook_im(obj_map, logAmp=False)
    except IOError:
        print '*** Using exception hack for name rounding error ***',
        i = 0
        up = True
        indx = float(atmos_map[-19:-11])
        while not os.path.isfile(atmos_map):
            # print atmos_map[:11],  atmos_map[13:]
            # atmos_map = atmos_map[:-12]+ str(i) + atmos_map[-11:]

            # print atmos_map
            # print indx, indx +i, '%1.6f' % (indx +i)
            atmos_map = atmos_map[:-19] + '%1.6f' % (indx +
                                                     i) + atmos_map[-11:]
            print atmos_map
            if up:
                i += 1e-6
            else:
                i -= 1e-6
            if i >= 50e-6:
                i = 0
                up = 0
            elif i <= -50e-6:
                print 'No file found'
                exit()

            # rawImageIO.scale_image(atmos_map, 1e-6)
        obj_map = proper.prop_errormap(wfo,
                                       atmos_map,
                                       MULTIPLY=1.0,
                                       WAVEFRONT=True,
                                       MAP="obj_map",
                                       SAMPLING=tp.samp)

    # quicklook_im(obj_map, logAmp=False)
    return obj_map
Esempio n. 7
0
def check_sampling(tstep, wfo, location, line_info, units=None):
    """
    checks the sampling of the wavefront at the given location and prints to console

    :param tstep: timestep, will only check for first timestep, so when tstep==0
    :param wfo: wavefront object
    :param location: string that identifies where call is being made
    :param line_info: info on the line number and function name from where check_sampling was called
        example: getframeinfo(stack()[0][0])
        via: from inspect import getframeinfo, stack
    :param units: desired units of returned print statement; options are 'mm,'um','nm','arcsec','rad'
    :return: prints sampling to the command line
    """
    if tstep == 0:
        print(
            f"From {line_info.filename}:{line_info.lineno}\n Sampling at {location}"
        )
        for w in range(wfo.wf_collection.shape[0]):
            check_sampling = proper.prop_get_sampling(wfo.wf_collection[w, 0])
            if units == 'mm':
                print(
                    f"sampling at wavelength={wfo.wsamples[w]*1e9:.0f}nm is {check_sampling:.4f} m"
                )
            elif units == 'um':
                print(
                    f"sampling at wavelength={wfo.wsamples[w] * 1e9:.0f}nm is {check_sampling*1e6:.1f} um"
                )
            elif units == 'nm':
                print(
                    f"sampling at wavelength={wfo.wsamples[w] * 1e9:.0f}nm is {check_sampling*1e9:.1f} nm"
                )
            elif units == 'arcsec':
                check_sampling = proper.prop_get_sampling_arcsec(
                    wfo.wf_collection[w, 0])
                print(
                    f"sampling at wavelength={wfo.wsamples[w] * 1e9:.0f}nm is {check_sampling*1e3:.2f} mas"
                )
            elif units == 'rad':
                check_sampling = proper.prop_get_sampling_radians(
                    wfo.wf_collection[w, 0])
                print(
                    f"sampling at wavelength={wfo.wsamples[w] * 1e9:.0f}nm is {check_sampling:.3f} rad"
                )
            else:
                print(
                    f"sampling at wavelength={wfo.wsamples[w] * 1e9:.0f}nm is {check_sampling} m"
                )
Esempio n. 8
0
def prop_tilt(wf, tilt_x, tilt_y):
    """Tilt a wavefront in X and Y.
    
    based on tilt(self, Xangle, Yangle) from Poppy (poppy_core.py)
    
    From that function's docs:
    The sign convention is chosen such that positive Yangle tilts move the star upwards in the
    array at the focal plane. (This is sort of an inverse of what physically happens in the propagation
    to or through focus, but we're ignoring that here and trying to just work in sky coords)
    
    Parameters
    ----------
    wf : obj
        WaveFront class object
                
    tilt_x : float
        Tilt angle along x in arc seconds
    
    tilt_y : float
        Tilt angle along y in arc seconds
        
    Returns
    -------
        None
        Modifies wavefront array in wf object.
    """

    if np.abs(tilt_x) > 0 or np.abs(tilt_y) > 0:
        sampling = proper.prop_get_sampling(wf)  # m/pixel
        xangle_rad = tilt_x * np.pi / 648000.  # rad.
        yangle_rad = tilt_y * np.pi / 648000.  # rad.

        ngrid = proper.prop_get_gridsize(wf)  # pixels
        U, V = np.indices(wf.wfarr.shape, dtype=float)
        U -= (ngrid - 1) / 2.0  # pixels X
        U *= sampling  # m
        V -= (ngrid - 1) / 2.0  # pixels Y
        V *= sampling  # m

        # Not totally comfortable that these are combined linearly
        # but go with Poppy for now
        phase = V * xangle_rad + U * yangle_rad  # rad. m
        proper.prop_add_phase(wf, phase)
Esempio n. 9
0
    def set_size(self, wf, size_in_lambda_d=0, size_in_m=0):
        """
        sets size of occulter in m, depending on if input is in units of lambda/D or in m

        :param wf: 2D wavefront
        :param size_in_lambda_d: desired occulter size in units of lambda/D
        :param size_in_m: desired occulter size in m
        :return: occulter size in m
        """
        lamda = proper.prop_get_wavelength(wf)
        dx_m = proper.prop_get_sampling(wf)
        dx_rad = proper.prop_get_sampling_radians(wf)

        if size_in_lambda_d is not 0:
            occrad_rad = size_in_lambda_d * lamda / tp.entrance_d  # occulter radius in radians
            self.size = occrad_rad * dx_m / dx_rad  # occulter radius in meters
        elif size_in_m is not 0:
            self.size = size_in_m
        else:
            raise ValueError('must set occulter size in either m or lambda/D units')
 def build_m1_opd():
     return gen_opdmap(opd1_func, proper.prop_get_gridsize(wfo), proper.prop_get_sampling(wfo))
Esempio n. 11
0
def scexao_model(lmda, grid_size, kwargs):
    """
    propagates instantaneous complex E-field thru Subaru from the DM through SCExAO

    uses PyPROPER3 to generate the complex E-field at the pupil plane, then propagates it through SCExAO 50x50 DM,
        then coronagraph, to the focal plane
    :returns spectral cube at instantaneous time in the focal_plane()
    """
    # print("Propagating Broadband Wavefront Through Subaru")

    # Initialize the Wavefront in Proper
    wfo = proper.prop_begin(entrance_d, lmda, grid_size, beam_ratio)

    # Defines aperture (baffle-before primary)
    proper.prop_circular_aperture(wfo, entrance_d / 2)
    proper.prop_define_entrance(wfo)  # normalizes abs intensity

    # Test Sampling
    if kwargs['verbose'] and kwargs['ix'] == 0:
        check1 = proper.prop_get_sampling(wfo)
        print(
            f"\n\tDM Pupil Plane\n"
            f"sampling at aperture is {check1 * 1e3:.4f} mm\n"
            f"Total Sim is {check1 * 1e3 * grid_size:.2f}x{check1 * 1e3 * grid_size:.2f} mm\n"
            f"Diameter of beam is {check1 * 1e3 * grid_size * beam_ratio:.4f} mm over {grid_size * beam_ratio} pix"
        )

    # SCExAO Reimaging 1
    proper.prop_lens(
        wfo, fl_SxOAPG)  # produces f#14 beam (approx exit beam of AO188)
    proper.prop_propagate(wfo, fl_SxOAPG * 2)  # move to second pupil
    if kwargs['verbose'] and kwargs['ix'] == 0:
        print(f"initial f# is {proper.prop_get_fratio(wfo):.2f}\n")

    ########################################
    # Import/Apply Actual DM Map
    # #######################################
    plot_flag = False
    if kwargs['verbose'] and kwargs['ix'] == 0:
        plot_flag = True

    dm_map = kwargs['map']
    errormap(wfo,
             dm_map,
             SAMPLING=dm_pitch,
             MIRROR_SURFACE=True,
             MASKING=True,
             BR=beam_ratio,
             PLOT=plot_flag)  # MICRONS=True

    if kwargs['verbose'] and kwargs['ix'] == 0:
        fig, subplot = plt.subplots(nrows=1, ncols=2, figsize=(12, 5))
        ax1, ax2 = subplot.flatten()
        fig.suptitle('SCExAO Model WFO after errormap',
                     fontweight='bold',
                     fontsize=14)
        ax1.imshow(proper.prop_get_amplitude(wfo), interpolation='none'
                   )  # np.abs(proper.prop_shift_center(wfo.wfarr))**2
        ax1.set_title('Amplitude')
        ax2.imshow(
            proper.prop_get_phase(wfo),
            interpolation=
            'none',  # np.angle(proper.prop_shift_center(wfo.wfarr))
            vmin=-1 * np.pi,
            vmax=1 * np.pi,
            cmap='hsv')  # , cmap='hsv'
        ax2.set_title('Phase')

    # ------------------------------------------------
    # SCExAO Reimaging 2
    proper.prop_lens(wfo, fl_SxOAPG)
    proper.prop_propagate(wfo,
                          fl_SxOAPG)  # focus at exit of DM telescope system
    proper.prop_lens(wfo, fl_SxOAPG)
    proper.prop_propagate(wfo,
                          fl_SxOAPG)  # focus at exit of DM telescope system

    # # Coronagraph
    SubaruPupil(wfo)  # focal plane mask
    # if kwargs['verbose'] and kwargs['ix']==0:
    #     fig, subplot = plt.subplots(nrows=1, ncols=2, figsize=(12, 5))
    #     ax1, ax2 = subplot.flatten()
    #     fig.suptitle('SCExAO Model WFO after FPM', fontweight='bold', fontsize=14)
    #     # ax.imshow(dm_map, interpolation='none')
    #     ax1.imshow(np.abs(proper.prop_shift_center(wfo.wfarr))**2, interpolation='none', norm=LogNorm(vmin=1e-7,vmax=1e-2))
    #     ax1.set_title('Amplitude')
    #     ax2.imshow(np.angle(proper.prop_shift_center(wfo.wfarr)), interpolation='none',
    #                vmin=-2*np.pi, vmax=2*np.pi, cmap='hsv')  # , cmap='hsv'
    #     ax2.set_title('Phase')
    proper.prop_propagate(wfo, fl_SxOAPG)
    proper.prop_lens(wfo, fl_SxOAPG)
    proper.prop_propagate(wfo, fl_SxOAPG)  # middle of 2f system
    proper.prop_circular_aperture(wfo, lyot_size, NORM=True)  # lyot stop
    proper.prop_propagate(wfo, fl_SxOAPG)  #
    proper.prop_lens(wfo, fl_SxOAPG)  # exit lens of gaussian telescope
    proper.prop_propagate(wfo, fl_SxOAPG)  # to focus

    # MEC Pickoff reimager.
    proper.prop_propagate(wfo, mec_parax_fl)  # to another pupil
    proper.prop_lens(
        wfo, mec_parax_fl)  # collimating lens, pupil size should be 8 mm
    proper.prop_propagate(wfo, mec1_fl +
                          .0142557)  # mec1_fl  .054  mec1_fl+.0101057
    # if kwargs['verbose'] and kwargs['ix']==0:
    #     current = proper.prop_get_beamradius(wfo)
    #     print(f'Beam Radius after SCExAO exit (at MEC foreoptics entrance) is {current*1e3:.3f} mm\n'
    #           f'current f# is {proper.prop_get_fratio(wfo):.2f}\n')

    # ##################################
    # MEC Optics Box
    # ###################################
    proper.prop_circular_aperture(wfo,
                                  0.00866)  # reading off the zemax diameter
    proper.prop_lens(wfo, mec1_fl)  # MEC lens 1
    proper.prop_propagate(wfo,
                          mec_l1_l2)  # there is a image plane at z=mec1_fl
    proper.prop_lens(wfo, mec2_fl)  # MEC lens 2 (tiny lens)
    proper.prop_propagate(wfo, mec_l2_l3)
    proper.prop_lens(wfo, mec3_fl)  # MEC lens 3
    proper.prop_propagate(wfo, mec3_fl,
                          TO_PLANE=False)  # , TO_PLANE=True mec_l3_focus

    # #######################################
    # Focal Plane
    # #######################################
    # Check Sampling in focal plane
    # shifts wfo from Fourier Space (origin==lower left corner) to object space (origin==center)
    # wf, samp = proper.prop_end(wfo, NoAbs=True)
    wf = proper.prop_shift_center(wfo.wfarr)
    wf = extract_center(wf, new_size=np.array(kwargs['psf_size']))
    samp = proper.prop_get_sampling(wfo)
    smp_asec = proper.prop_get_sampling_arcsec(wfo)

    if kwargs['verbose'] and kwargs['ix'] == 0:
        fig, subplot = plt.subplots(nrows=1, ncols=2, figsize=(12, 5))
        fig.subplots_adjust(left=0.08, hspace=.4, wspace=0.2)

        ax1, ax2 = subplot.flatten()
        fig.suptitle('SCExAO Model Focal Plane',
                     fontweight='bold',
                     fontsize=14)
        tic_spacing, tic_labels, axlabel = scale_lD(
            wfo, newsize=kwargs['psf_size'][0])
        tic_spacing[0] = tic_spacing[0] + 1  # hack for edge effects
        tic_spacing[-1] = tic_spacing[-1] - 1  # hack for edge effects

        im = ax1.imshow(
            np.abs(wf)**2,
            interpolation='none',
            norm=LogNorm(
                vmin=1e-7,
                vmax=1e-2))  # np.abs(proper.prop_shift_center(wfo.wfarr))**2
        ax1.set_xticks(tic_spacing)
        ax1.set_xticklabels(tic_labels)
        ax1.set_yticks(tic_spacing)
        ax1.set_yticklabels(tic_labels)
        ax1.set_ylabel(axlabel, fontsize=8)
        add_colorbar(im)

        im = ax2.imshow(np.angle(wf),
                        interpolation='none',
                        vmin=-np.pi,
                        vmax=np.pi,
                        cmap='hsv')
        ax2.set_xticks(tic_spacing)
        ax2.set_xticklabels(tic_labels)
        ax2.set_yticks(tic_spacing)
        ax2.set_yticklabels(tic_labels)
        ax2.set_ylabel(axlabel, fontsize=8)
        add_colorbar(im)

    if kwargs['verbose'] and kwargs['ix'] == 0:
        print(
            f"\nFocal Plane\n"
            f"sampling at focal plane is {samp*1e6:.1f} um ~= {smp_asec * 1e3:.4f} mas\n"
            f"\tfull FOV is {samp * kwargs['psf_size'][0] * 1e3:.2f} x {samp * kwargs['psf_size'][1] * 1e3:.2f} mm "
        )
        # s_rad = proper.prop_get_sampling_radians(wfo)
        # print(f"sampling at focal plane is {s_rad * 1e6:.6f} urad")
        print(f'final focal ratio is {proper.prop_get_fratio(wfo)}')

        print(f"Finished simulation")

    return wf, samp
Esempio n. 12
0
def wfirst_phaseb(lambda_m, output_dim0, PASSVALUE={'dummy': 0}):

    # "output_dim" is used to specify the output dimension in pixels at the final image plane.
    # Computational grid sizes are hardcoded for each coronagraph.
    # Based on Zemax prescription "WFIRST_CGI_DI_LOWFS_Sep24_2018.zmx" by Hong Tang.

    data_dir = wfirst_phaseb_proper.data_dir
    if 'PASSVALUE' in locals():
        if 'data_dir' in PASSVALUE: data_dir = PASSVALUE['data_dir']

    map_dir = data_dir + wfirst_phaseb_proper.map_dir
    polfile = data_dir + wfirst_phaseb_proper.polfile

    cor_type = 'hlc'  # coronagraph type ('hlc', 'spc', 'none')
    source_x_offset_mas = 0  # source offset in mas (tilt applied at primary)
    source_y_offset_mas = 0
    source_x_offset = 0  # source offset in lambda0_m/D radians (tilt applied at primary)
    source_y_offset = 0
    polaxis = 0  # polarization axis aberrations:
    #    -2 = -45d in, Y out
    #    -1 = -45d in, X out
    #     1 = +45d in, X out
    #     2 = +45d in, Y out
    #     5 = mean of modes -1 & +1 (X channel polarizer)
    #     6 = mean of modes -2 & +2 (Y channel polarizer)
    #    10 = mean of all modes (no polarization filtering)
    use_errors = 1  # use optical surface phase errors? 1 or 0
    zindex = np.array([0, 0])  # array of Zernike polynomial indices
    zval_m = np.array([0, 0])  # array of Zernike coefficients (meters RMS WFE)
    use_aperture = 0  # use apertures on all optics? 1 or 0
    cgi_x_shift_pupdiam = 0  # X,Y shear of wavefront at FSM (bulk displacement of CGI); normalized relative to pupil diameter
    cgi_y_shift_pupdiam = 0
    cgi_x_shift_m = 0  # X,Y shear of wavefront at FSM (bulk displacement of CGI) in meters
    cgi_y_shift_m = 0
    fsm_x_offset_mas = 0  # offset in focal plane caused by tilt of FSM in mas
    fsm_y_offset_mas = 0
    fsm_x_offset = 0  # offset in focal plane caused by tilt of FSM in lambda0/D
    fsm_y_offset = 0
    end_at_fsm = 0  # end propagation after propagating to FSM (no FSM errors)
    focm_z_shift_m = 0  # offset (meters) of focus correction mirror (+ increases path length)
    use_hlc_dm_patterns = 0  # use Dwight's HLC default DM wavefront patterns? 1 or 0
    use_dm1 = 0  # use DM1? 1 or 0
    use_dm2 = 0  # use DM2? 1 or 0
    dm_sampling_m = 0.9906e-3  # actuator spacing in meters
    dm1_xc_act = 23.5  # for 48x48 DM, wavefront centered at actuator intersections: (0,0) = 1st actuator center
    dm1_yc_act = 23.5
    dm1_xtilt_deg = 0  # tilt around X axis (deg)
    dm1_ytilt_deg = 5.7  # effective DM tilt in deg including 9.65 deg actual tilt and pupil ellipticity
    dm1_ztilt_deg = 0  # rotation of DM about optical axis (deg)
    dm2_xc_act = 23.5  # for 48x48 DM, wavefront centered at actuator intersections: (0,0) = 1st actuator center
    dm2_yc_act = 23.5
    dm2_xtilt_deg = 0  # tilt around X axis (deg)
    dm2_ytilt_deg = 5.7  # effective DM tilt in deg including 9.65 deg actual tilt and pupil ellipticity
    dm2_ztilt_deg = 0  # rotation of DM about optical axis (deg)
    use_pupil_mask = 1  # SPC only: use SPC pupil mask (0 or 1)
    mask_x_shift_pupdiam = 0  # X,Y shear of shaped pupil mask; normalized relative to pupil diameter
    mask_y_shift_pupdiam = 0
    mask_x_shift_m = 0  # X,Y shear of shaped pupil mask in meters
    mask_y_shift_m = 0
    use_fpm = 1  # use occulter? 1 or 0
    fpm_x_offset = 0  # FPM x,y offset in lambda0/D
    fpm_y_offset = 0
    fpm_x_offset_m = 0  # FPM x,y offset in meters
    fpm_y_offset_m = 0
    fpm_z_shift_m = 0  # occulter offset in meters along optical axis (+ = away from prior optics)
    pinhole_diam_m = 0  # FPM pinhole diameter in meters
    end_at_fpm_exit_pupil = 0  # return field at FPM exit pupil?
    output_field_rootname = ''  # rootname of FPM exit pupil field file (must set end_at_fpm_exit_pupil=1)
    use_lyot_stop = 1  # use Lyot stop? 1 or 0
    lyot_x_shift_pupdiam = 0  # X,Y shear of Lyot stop mask; normalized relative to pupil diameter
    lyot_y_shift_pupdiam = 0
    lyot_x_shift_m = 0  # X,Y shear of Lyot stop mask in meters
    lyot_y_shift_m = 0
    use_field_stop = 1  # use field stop (HLC)? 1 or 0
    field_stop_radius_lam0 = 0  # field stop radius in lambda0/D (HLC or SPC-wide mask only)
    field_stop_x_offset = 0  # field stop offset in lambda0/D
    field_stop_y_offset = 0
    field_stop_x_offset_m = 0  # field stop offset in meters
    field_stop_y_offset_m = 0
    use_pupil_lens = 0  # use pupil imaging lens? 0 or 1
    use_defocus_lens = 0  # use defocusing lens? Options are 1, 2, 3, 4, corresponding to +18.0, +9.0, -4.0, -8.0 waves P-V @ 550 nm
    defocus = 0  # instead of specific lens, defocus in waves P-V @ 550 nm (-8.7 to 42.0 waves)
    final_sampling_m = 0  # final sampling in meters (overrides final_sampling_lam0)
    final_sampling_lam0 = 0  # final sampling in lambda0/D
    output_dim = output_dim0  # dimension of output in pixels (overrides output_dim0)

    if 'PASSVALUE' in locals():
        if 'use_fpm' in PASSVALUE: use_fpm = PASSVALUE['use_fpm']
        if 'cor_type' in PASSVALUE: cor_type = PASSVALUE['cor_type']

    is_spc = False
    is_hlc = False

    if cor_type == 'hlc':
        is_hlc = True
        file_directory = data_dir + '/hlc_20190210/'  # must have trailing "/"
        prefix = file_directory + 'run461_'
        pupil_diam_pix = 309.0
        pupil_file = prefix + 'pupil_rotated.fits'
        lyot_stop_file = prefix + 'lyot.fits'
        lambda0_m = 0.575e-6
        lam_occ = [
            5.4625e-07, 5.49444444444e-07, 5.52638888889e-07, 5.534375e-07,
            5.55833333333e-07, 5.59027777778e-07, 5.60625e-07,
            5.62222222222e-07, 5.65416666667e-07, 5.678125e-07,
            5.68611111111e-07, 5.71805555556e-07, 5.75e-07, 5.78194444444e-07,
            5.81388888889e-07, 5.821875e-07, 5.84583333333e-07,
            5.87777777778e-07, 5.89375e-07, 5.90972222222e-07,
            5.94166666667e-07, 5.965625e-07, 5.97361111111e-07,
            6.00555555556e-07, 6.0375e-07
        ]
        lam_occs = [
            '5.4625e-07', '5.49444444444e-07', '5.52638888889e-07',
            '5.534375e-07', '5.55833333333e-07', '5.59027777778e-07',
            '5.60625e-07', '5.62222222222e-07', '5.65416666667e-07',
            '5.678125e-07', '5.68611111111e-07', '5.71805555556e-07',
            '5.75e-07', '5.78194444444e-07', '5.81388888889e-07',
            '5.821875e-07', '5.84583333333e-07', '5.87777777778e-07',
            '5.89375e-07', '5.90972222222e-07', '5.94166666667e-07',
            '5.965625e-07', '5.97361111111e-07', '6.00555555556e-07',
            '6.0375e-07'
        ]
        lam_occs = [
            prefix + 'occ_lam' + s + 'theta6.69polp_' for s in lam_occs
        ]
        # find nearest matching FPM wavelength
        wlam = (np.abs(lambda_m - np.array(lam_occ))).argmin()
        occulter_file_r = lam_occs[wlam] + 'real.fits'
        occulter_file_i = lam_occs[wlam] + 'imag.fits'
        n_default = 1024  # gridsize in non-critical areas
        if use_fpm == 1:
            n_to_fpm = 2048
        else:
            n_to_fpm = 1024
        n_from_lyotstop = 1024
        field_stop_radius_lam0 = 9.0
    elif cor_type == 'hlc_erkin':
        is_hlc = True
        file_directory = data_dir + '/hlc_20190206_v3/'  # must have trailing "/"
        prefix = file_directory + 'dsn17d_run2_pup310_fpm2048_'
        pupil_diam_pix = 310.0
        pupil_file = prefix + 'pupil.fits'
        lyot_stop_file = prefix + 'lyot.fits'
        lambda0_m = 0.575e-6
        lam_occ = [
            5.4625e-07, 5.4944e-07, 5.5264e-07, 5.5583e-07, 5.5903e-07,
            5.6222e-07, 5.6542e-07, 5.6861e-07, 5.7181e-07, 5.75e-07,
            5.7819e-07, 5.8139e-07, 5.8458e-07, 5.8778e-07, 5.9097e-07,
            5.9417e-07, 5.9736e-07, 6.0056e-07, 6.0375e-07
        ]
        lam_occs = [
            '5.4625e-07', '5.4944e-07', '5.5264e-07', '5.5583e-07',
            '5.5903e-07', '5.6222e-07', '5.6542e-07', '5.6861e-07',
            '5.7181e-07', '5.75e-07', '5.7819e-07', '5.8139e-07', '5.8458e-07',
            '5.8778e-07', '5.9097e-07', '5.9417e-07', '5.9736e-07',
            '6.0056e-07', '6.0375e-07'
        ]
        lam_occs = [
            prefix + 'occ_lam' + s + 'theta6.69pols_' for s in lam_occs
        ]
        # find nearest matching FPM wavelength
        wlam = (np.abs(lambda_m - np.array(lam_occ))).argmin()
        occulter_file_r = lam_occs[wlam] + 'real_rotated.fits'
        occulter_file_i = lam_occs[wlam] + 'imag_rotated.fits'
        n_default = 1024  # gridsize in non-critical areas
        if use_fpm == 1:
            n_to_fpm = 2048
        else:
            n_to_fpm = 1024
        n_from_lyotstop = 1024
        field_stop_radius_lam0 = 9.0
    elif cor_type == 'spc-ifs_short' or cor_type == 'spc-ifs_long' or cor_type == 'spc-spec_short' or cor_type == 'spc-spec_long':
        is_spc = True
        file_dir = data_dir + '/spc_20190130/'  # must have trailing "/"
        pupil_diam_pix = 1000.0
        pupil_file = file_dir + 'pupil_SPC-20190130_rotated.fits'
        pupil_mask_file = file_dir + 'SPM_SPC-20190130.fits'
        fpm_file = file_dir + 'fpm_0.05lamdivD.fits'
        fpm_sampling = 0.05  # sampling in fpm_sampling_lambda_m/D of FPM mask
        if cor_type == 'spc-ifs_short' or cor_type == 'spc-spec_short':
            fpm_sampling_lambda_m = 0.66e-6
            lambda0_m = 0.66e-6
        else:
            fpm_sampling_lambda_m = 0.73e-6
            lambda0_m = 0.73e-6  # FPM scaled for this central wavelength
        lyot_stop_file = file_dir + 'LS_SPC-20190130.fits'
        n_default = 2048  # gridsize in non-critical areas
        n_to_fpm = 2048  # gridsize to/from FPM
        n_mft = 1400  # gridsize to FPM (propagation to/from FPM handled by MFT)
        n_from_lyotstop = 4096
    elif cor_type == 'spc-wide':
        is_spc = True
        file_dir = data_dir + '/spc_20181220/'  # must have trailing "/"
        pupil_diam_pix = 1000.0
        pupil_file = file_dir + 'pupil_SPC-20181220_1k_rotated.fits'
        pupil_mask_file = file_dir + 'SPM_SPC-20181220_1000_rounded9_gray.fits'
        fpm_file = file_dir + 'fpm_0.05lamdivD.fits'
        fpm_sampling = 0.05  # sampling in lambda0/D of FPM mask
        fpm_sampling_lambda_m = 0.825e-6
        lambda0_m = 0.825e-6  # FPM scaled for this central wavelength
        lyot_stop_file = file_dir + 'LS_SPC-20181220_1k.fits'
        n_default = 2048  # gridsize in non-critical areas
        n_to_fpm = 2048  # gridsize to/from FPM
        n_mft = 1400
        n_from_lyotstop = 4096
    elif cor_type == 'none':
        file_directory = data_dir + '/hlc_20190210/'  # must have trailing "/"
        prefix = file_directory + 'run461_'
        pupil_diam_pix = 309.0
        pupil_file = prefix + 'pupil_rotated.fits'
        lambda0_m = 0.575e-6
        use_fpm = 0
        use_lyot_stop = 0
        use_field_stop = 0
        n_default = 1024
        n_to_fpm = 1024
        n_from_lyotstop = 1024
    else:
        raise Exception('ERROR: Unsupported cor_type: ' + cor_type)

    if 'PASSVALUE' in locals():
        if 'lam0' in PASSVALUE: lamba0_m = PASSVALUE['lam0'] * 1.0e-6
        if 'lambda0_m' in PASSVALUE: lambda0_m = PASSVALUE['lambda0_m']
        mas_per_lamD = lambda0_m * 360.0 * 3600.0 / (
            2 * np.pi * 2.363) * 1000  # mas per lambda0/D
        if 'source_x_offset' in PASSVALUE:
            source_x_offset = PASSVALUE['source_x_offset']
        if 'source_y_offset' in PASSVALUE:
            source_y_offset = PASSVALUE['source_y_offset']
        if 'source_x_offset_mas' in PASSVALUE:
            source_x_offset = PASSVALUE['source_x_offset_mas'] / mas_per_lamD
        if 'source_y_offset_mas' in PASSVALUE:
            source_y_offset = PASSVALUE['source_y_offset_mas'] / mas_per_lamD
        if 'use_errors' in PASSVALUE: use_errors = PASSVALUE['use_errors']
        if 'polaxis' in PASSVALUE: polaxis = PASSVALUE['polaxis']
        if 'zindex' in PASSVALUE: zindex = np.array(PASSVALUE['zindex'])
        if 'zval_m' in PASSVALUE: zval_m = np.array(PASSVALUE['zval_m'])
        if 'end_at_fsm' in PASSVALUE: end_at_fsm = PASSVALUE['end_at_fsm']
        if 'cgi_x_shift_pupdiam' in PASSVALUE:
            cgi_x_shift_pupdiam = PASSVALUE['cgi_x_shift_pupdiam']
        if 'cgi_y_shift_pupdiam' in PASSVALUE:
            cgi_y_shift_pupdiam = PASSVALUE['cgi_y_shift_pupdiam']
        if 'cgi_x_shift_m' in PASSVALUE:
            cgi_x_shift_m = PASSVALUE['cgi_x_shift_m']
        if 'cgi_y_shift_m' in PASSVALUE:
            cgi_y_shift_m = PASSVALUE['cgi_y_shift_m']
        if 'fsm_x_offset' in PASSVALUE:
            fsm_x_offset = PASSVALUE['fsm_x_offset']
        if 'fsm_y_offset' in PASSVALUE:
            fsm_y_offset = PASSVALUE['fsm_y_offset']
        if 'fsm_x_offset_mas' in PASSVALUE:
            fsm_x_offset = PASSVALUE['fsm_x_offset_mas'] / mas_per_lamD
        if 'fsm_y_offset_mas' in PASSVALUE:
            fsm_y_offset = PASSVALUE['fsm_y_offset_mas'] / mas_per_lamD
        if 'focm_z_shift_m' in PASSVALUE:
            focm_z_shift_m = PASSVALUE['focm_z_shift_m']
        if 'use_hlc_dm_patterns' in PASSVALUE:
            use_hlc_dm_patterns = PASSVALUE['use_hlc_dm_patterns']
        if 'use_dm1' in PASSVALUE: use_dm1 = PASSVALUE['use_dm1']
        if 'dm1_m' in PASSVALUE: dm1_m = PASSVALUE['dm1_m']
        if 'dm1_xc_act' in PASSVALUE: dm1_xc_act = PASSVALUE['dm1_xc_act']
        if 'dm1_yc_act' in PASSVALUE: dm1_yc_act = PASSVALUE['dm1_yc_act']
        if 'dm1_xtilt_deg' in PASSVALUE:
            dm1_xtilt_deg = PASSVALUE['dm1_xtilt_deg']
        if 'dm1_ytilt_deg' in PASSVALUE:
            dm1_ytilt_deg = PASSVALUE['dm1_ytilt_deg']
        if 'dm1_ztilt_deg' in PASSVALUE:
            dm1_ztilt_deg = PASSVALUE['dm1_ztilt_deg']
        if 'use_dm2' in PASSVALUE: use_dm2 = PASSVALUE['use_dm2']
        if 'dm2_m' in PASSVALUE: dm2_m = PASSVALUE['dm2_m']
        if 'dm2_xc_act' in PASSVALUE: dm2_xc_act = PASSVALUE['dm2_xc_act']
        if 'dm2_yc_act' in PASSVALUE: dm2_yc_act = PASSVALUE['dm2_yc_act']
        if 'dm2_xtilt_deg' in PASSVALUE:
            dm2_xtilt_deg = PASSVALUE['dm2_xtilt_deg']
        if 'dm2_ytilt_deg' in PASSVALUE:
            dm2_ytilt_deg = PASSVALUE['dm2_ytilt_deg']
        if 'dm2_ztilt_deg' in PASSVALUE:
            dm2_ztilt_deg = PASSVALUE['dm2_ztilt_deg']
        if 'use_pupil_mask' in PASSVALUE:
            use_pupil_mask = PASSVALUE['use_pupil_mask']
        if 'mask_x_shift_pupdiam' in PASSVALUE:
            mask_x_shift_pupdiam = PASSVALUE['mask_x_shift_pupdiam']
        if 'mask_y_shift_pupdiam' in PASSVALUE:
            mask_y_shift_pupdiam = PASSVALUE['mask_y_shift_pupdiam']
        if 'mask_x_shift_m' in PASSVALUE:
            mask_x_shift_m = PASSVALUE['mask_x_shift_m']
        if 'mask_y_shift_m' in PASSVALUE:
            mask_y_shift_m = PASSVALUE['mask_y_shift_m']
        if 'fpm_x_offset' in PASSVALUE:
            fpm_x_offset = PASSVALUE['fpm_x_offset']
        if 'fpm_y_offset' in PASSVALUE:
            fpm_y_offset = PASSVALUE['fpm_y_offset']
        if 'fpm_x_offset_m' in PASSVALUE:
            fpm_x_offset_m = PASSVALUE['fpm_x_offset_m']
        if 'fpm_y_offset_m' in PASSVALUE:
            fpm_y_offset_m = PASSVALUE['fpm_y_offset_m']
        if 'fpm_z_shift_m' in PASSVALUE:
            fpm_z_shift_m = PASSVALUE['fpm_z_shift_m']
        if 'pinhole_diam_m' in PASSVALUE:
            pinhole_diam_m = PASSVALUE['pinhole_diam_m']
        if 'end_at_fpm_exit_pupil' in PASSVALUE:
            end_at_fpm_exit_pupil = PASSVALUE['end_at_fpm_exit_pupil']
        if 'output_field_rootname' in PASSVALUE:
            output_field_rootname = PASSVALUE['output_field_rootname']
        if 'use_lyot_stop' in PASSVALUE:
            use_lyot_stop = PASSVALUE['use_lyot_stop']
        if 'lyot_x_shift_pupdiam' in PASSVALUE:
            lyot_x_shift_pupdiam = PASSVALUE['lyot_x_shift_pupdiam']
        if 'lyot_y_shift_pupdiam' in PASSVALUE:
            lyot_y_shift_pupdiam = PASSVALUE['lyot_y_shift_pupdiam']
        if 'lyot_x_shift_m' in PASSVALUE:
            lyot_x_shift_m = PASSVALUE['lyot_x_shift_m']
        if 'lyot_y_shift_m' in PASSVALUE:
            lyot_y_shift_m = PASSVALUE['lyot_y_shift_m']
        if 'use_field_stop' in PASSVALUE:
            use_field_stop = PASSVALUE['use_field_stop']
        if 'field_stop_x_offset' in PASSVALUE:
            field_stop_x_offset = PASSVALUE['field_stop_x_offset']
        if 'field_stop_y_offset' in PASSVALUE:
            field_stop_y_offset = PASSVALUE['field_stop_y_offset']
        if 'field_stop_x_offset_m' in PASSVALUE:
            field_stop_x_offset_m = PASSVALUE['field_stop_x_offset_m']
        if 'field_stop_y_offset_m' in PASSVALUE:
            field_stop_y_offset_m = PASSVALUE['field_stop_y_offset_m']
        if 'use_pupil_lens' in PASSVALUE:
            use_pupil_lens = PASSVALUE['use_pupil_lens']
        if 'use_defocus_lens' in PASSVALUE:
            use_defocus_lens = PASSVALUE['use_defocus_lens']
        if 'defocus' in PASSVALUE: defocus = PASSVALUE['defocus']
        if 'output_dim' in PASSVALUE: output_dim = PASSVALUE['output_dim']
        if 'final_sampling_m' in PASSVALUE:
            final_sampling_m = PASSVALUE['final_sampling_m']
        if 'final_sampling_lam0' in PASSVALUE:
            final_sampling_lam0 = PASSVALUE['final_sampling_lam0']

    diam = 2.3633372
    fl_pri = 2.83459423440 * 1.0013
    d_pri_sec = 2.285150515460035
    d_focus_sec = d_pri_sec - fl_pri
    fl_sec = -0.653933011 * 1.0004095
    d_sec_focus = 3.580188916677103
    diam_sec = 0.58166
    d_sec_fold1 = 2.993753476654728
    d_fold1_focus = 0.586435440022375
    diam_fold1 = 0.09
    d_fold1_m3 = 1.680935841598811
    fl_m3 = 0.430216463069001
    d_focus_m3 = 1.094500401576436
    d_m3_pupil = 0.469156807701977
    d_m3_focus = 0.708841602661368
    diam_m3 = 0.2
    d_m3_m4 = 0.943514749358944
    fl_m4 = 0.116239114833590
    d_focus_m4 = 0.234673014520402
    d_m4_pupil = 0.474357941656967
    d_m4_focus = 0.230324117970585
    diam_m4 = 0.07
    d_m4_m5 = 0.429145636743193
    d_m5_focus = 0.198821518772608
    fl_m5 = 0.198821518772608
    d_m5_pupil = 0.716529242882632
    diam_m5 = 0.07
    d_m5_fold2 = 0.351125431220770
    diam_fold2 = 0.06
    d_fold2_fsm = 0.365403811661862
    d_fsm_oap1 = 0.354826767220001
    fl_oap1 = 0.503331895563883
    diam_oap1 = 0.06
    d_oap1_focm = 0.768005607094041
    d_focm_oap2 = 0.314483210543378
    fl_oap2 = 0.579156922073536
    diam_oap2 = 0.06
    d_oap2_dm1 = 0.775775726154228
    d_dm1_dm2 = 1.0
    d_dm2_oap3 = 0.394833855161549
    fl_oap3 = 1.217276467668519
    diam_oap3 = 0.06
    d_oap3_fold3 = 0.505329955078121
    diam_fold3 = 0.06
    d_fold3_oap4 = 1.158897671642761
    fl_oap4 = 0.446951159052363
    diam_oap4 = 0.06
    d_oap4_pupilmask = 0.423013568764728
    d_pupilmask_oap5 = 0.408810648253099
    fl_oap5 = 0.548189351937178
    diam_oap5 = 0.06
    d_oap5_fpm = 0.548189083164429
    d_fpm_oap6 = 0.548189083164429
    fl_oap6 = 0.548189083164429
    diam_oap6 = 0.06
    d_oap6_lyotstop = 0.687567667550736
    d_lyotstop_oap7 = 0.401748843470518
    fl_oap7 = 0.708251083480054
    diam_oap7 = 0.06
    d_oap7_fieldstop = 0.708251083480054
    d_fieldstop_oap8 = 0.210985967281651
    fl_oap8 = 0.210985967281651
    diam_oap8 = 0.06
    d_oap8_pupil = 0.238185804200797
    d_oap8_filter = 0.368452268225530
    diam_filter = 0.01
    d_filter_lens = 0.170799548215162
    fl_lens = 0.246017378417573 + 0.050001306014153
    diam_lens = 0.01
    d_lens_fold4 = 0.246017378417573
    diam_fold4 = 0.02
    d_fold4_image = 0.050001578514650
    fl_pupillens = 0.149260576823040

    n = n_default  # start off with less padding

    wavefront = proper.prop_begin(diam, lambda_m, n, float(pupil_diam_pix) / n)
    pupil = proper.prop_fits_read(pupil_file)
    proper.prop_multiply(wavefront, trim(pupil, n))
    pupil = 0
    if polaxis != 0: polmap(wavefront, polfile, pupil_diam_pix, polaxis)
    proper.prop_define_entrance(wavefront)
    proper.prop_lens(wavefront, fl_pri)
    if source_x_offset != 0 or source_y_offset != 0:
        # compute tilted wavefront to offset source by xoffset,yoffset lambda0_m/D
        xtilt_lam = -source_x_offset * lambda0_m / lambda_m
        ytilt_lam = -source_y_offset * lambda0_m / lambda_m
        x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1))
        y = np.transpose(x)
        proper.prop_multiply(
            wavefront,
            np.exp(complex(0, 1) * np.pi * (xtilt_lam * x + ytilt_lam * y)))
        x = 0
        y = 0
    if zindex[0] != 0: proper.prop_zernikes(wavefront, zindex, zval_m)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_PRIMARY_phase_error_V1.0.fits',
                             WAVEFRONT=True)
        proper.prop_errormap(
            wavefront,
            map_dir +
            'wfirst_phaseb_GROUND_TO_ORBIT_4.2X_phase_error_V1.0.fits',
            WAVEFRONT=True)

    proper.prop_propagate(wavefront, d_pri_sec, 'secondary')
    proper.prop_lens(wavefront, fl_sec)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_SECONDARY_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_sec / 2.0)

    proper.prop_propagate(wavefront, d_sec_fold1, 'FOLD_1')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FOLD1_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_fold1 / 2.0)

    proper.prop_propagate(wavefront, d_fold1_m3, 'M3')
    proper.prop_lens(wavefront, fl_m3)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_M3_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_m3 / 2.0)

    proper.prop_propagate(wavefront, d_m3_m4, 'M4')
    proper.prop_lens(wavefront, fl_m4)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_M4_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_m4 / 2.0)

    proper.prop_propagate(wavefront, d_m4_m5, 'M5')
    proper.prop_lens(wavefront, fl_m5)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_M5_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_m5 / 2.0)

    proper.prop_propagate(wavefront, d_m5_fold2, 'FOLD_2')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FOLD2_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_fold2 / 2.0)

    proper.prop_propagate(wavefront, d_fold2_fsm, 'FSM')
    if end_at_fsm == 1:
        (wavefront, sampling_m) = proper.prop_end(wavefront, NOABS=True)
        wavefront = trim(wavefront, n)
        return wavefront, sampling_m
    if cgi_x_shift_pupdiam != 0 or cgi_y_shift_pupdiam != 0 or cgi_x_shift_m != 0 or cgi_y_shift_m != 0:  # bulk coronagraph pupil shear
        # FFT the field, apply a tilt, FFT back
        if cgi_x_shift_pupdiam != 0 or cgi_y_shift_pupdiam != 0:
            # offsets are normalized to pupil diameter
            xt = -cgi_x_shift_pupdiam * pupil_diam_pix * float(
                pupil_diam_pix) / n
            yt = -cgi_y_shift_pupdiam * pupil_diam_pix * float(
                pupil_diam_pix) / n
        else:
            # offsets are meters
            d_m = proper.prop_get_sampling(wavefront)
            xt = -cgi_x_shift_m / d_m * float(pupil_diam_pix) / n
            yt = -cgi_y_shift_m / d_m * float(pupil_diam_pix) / n
        x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1))
        y = np.transpose(x)
        tilt = complex(0, 1) * np.pi * (x * xt + y * yt)
        x = 0
        y = 0
        wavefront0 = proper.prop_get_wavefront(wavefront)
        wavefront0 = ffts(wavefront0, -1)
        wavefront0 *= np.exp(tilt)
        wavefront0 = ffts(wavefront0, 1)
        tilt = 0
        wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
        wavefront0 = 0
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FSM_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_fsm / 2.0)
    if (fsm_x_offset != 0.0 or fsm_y_offset != 0.0):
        # compute tilted wavefront to offset source by fsm_x_offset,fsm_y_offset lambda0_m/D
        xtilt_lam = fsm_x_offset * lambda0_m / lambda_m
        ytilt_lam = fsm_y_offset * lambda0_m / lambda_m
        x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0), (n, 1))
        y = np.transpose(x)
        proper.prop_multiply(
            wavefront,
            np.exp(complex(0, 1) * np.pi * (xtilt_lam * x + ytilt_lam * y)))
        x = 0
        y = 0

    proper.prop_propagate(wavefront, d_fsm_oap1, 'OAP1')
    proper.prop_lens(wavefront, fl_oap1)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP1_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap1 / 2.0)

    proper.prop_propagate(wavefront, d_oap1_focm + focm_z_shift_m, 'FOCM')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FOCM_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_focm / 2.0)

    proper.prop_propagate(wavefront, d_focm_oap2 + focm_z_shift_m, 'OAP2')
    proper.prop_lens(wavefront, fl_oap2)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP2_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap2 / 2.0)

    proper.prop_propagate(wavefront, d_oap2_dm1, 'DM1')
    if use_dm1 != 0:
        proper.prop_dm(wavefront,
                       dm1_m,
                       dm1_xc_act,
                       dm1_yc_act,
                       dm_sampling_m,
                       XTILT=dm1_xtilt_deg,
                       YTILT=dm1_ytilt_deg,
                       ZTILT=dm1_ztilt_deg)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_DM1_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if is_hlc == True and use_hlc_dm_patterns == 1:
        dm1wfe = proper.prop_fits_read(prefix + 'dm1wfe.fits')
        proper.prop_add_phase(wavefront, trim(dm1wfe, n))
        dm1wfe = 0

    proper.prop_propagate(wavefront, d_dm1_dm2, 'DM2')
    if use_dm2 == 1:
        proper.prop_dm(wavefront,
                       dm2_m,
                       dm2_xc_act,
                       dm2_yc_act,
                       dm_sampling_m,
                       XTILT=dm2_xtilt_deg,
                       YTILT=dm2_ytilt_deg,
                       ZTILT=dm2_ztilt_deg)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_DM2_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if is_hlc == True:
        if use_hlc_dm_patterns == 1:
            dm2wfe = proper.prop_fits_read(prefix + 'dm2wfe.fits')
            proper.prop_add_phase(wavefront, trim(dm2wfe, n))
            dm2wfe = 0
        dm2mask = proper.prop_fits_read(prefix + 'dm2mask.fits')
        proper.prop_multiply(wavefront, trim(dm2mask, n))
        dm2mask = 0

    proper.prop_propagate(wavefront, d_dm2_oap3, 'OAP3')
    proper.prop_lens(wavefront, fl_oap3)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP3_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap3 / 2.0)

    proper.prop_propagate(wavefront, d_oap3_fold3, 'FOLD_3')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FOLD3_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_fold3 / 2.0)

    proper.prop_propagate(wavefront, d_fold3_oap4, 'OAP4')
    proper.prop_lens(wavefront, fl_oap4)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP4_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap4 / 2.0)

    proper.prop_propagate(wavefront, d_oap4_pupilmask,
                          'PUPIL_MASK')  # flat/reflective shaped pupil
    if is_spc == True and use_pupil_mask != 0:
        pupil_mask = proper.prop_fits_read(pupil_mask_file)
        pupil_mask = trim(pupil_mask, n)
        if mask_x_shift_pupdiam != 0 or mask_y_shift_pupdiam != 0 or mask_x_shift_m != 0 or mask_y_shift_m != 0:
            # shift SP mask by FFTing it, applying tilt, and FFTing back
            if mask_x_shift_pupdiam != 0 or mask_y_shift_pupdiam != 0:
                # offsets are normalized to pupil diameter
                xt = -mask_x_shift_pupdiam * pupil_diam_pix * float(
                    pupil_diam_pix) / n
                yt = -mask_y_shift_pupdiam * pupil_diam_pix * float(
                    pupil_diam_pix) / n
            else:
                d_m = proper.prop_get_sampling(wavefront)
                xt = -mask_x_shift_m / d_m * float(pupil_diam_pix) / n
                yt = -mask_y_shift_m / d_m * float(pupil_diam_pix) / n
            x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0),
                        (n, 1))
            y = np.transpose(x)
            tilt = complex(0, 1) * np.pi * (x * xt + y * yt)
            x = 0
            y = 0
            pupil_mask = ffts(pupil_mask, -1)
            pupil_mask *= np.exp(tilt)
            pupil_mask = ffts(pupil_mask, 1)
            pupil_mask = pupil_mask.real
            tilt = 0
        proper.prop_multiply(wavefront, pupil_mask)
        pupil_mask = 0
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_PUPILMASK_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    # while at a pupil, use more padding to provide 2x better sampling at FPM
    diam = 2 * proper.prop_get_beamradius(wavefront)
    (wavefront, dx) = proper.prop_end(wavefront, NOABS=True)
    n = n_to_fpm
    wavefront0 = trim(wavefront, n)
    wavefront = proper.prop_begin(diam, lambda_m, n, float(pupil_diam_pix) / n)
    wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
    wavefront0 = 0

    proper.prop_propagate(wavefront, d_pupilmask_oap5, 'OAP5')
    proper.prop_lens(wavefront, fl_oap5)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP5_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap5 / 2.0)

    proper.prop_propagate(wavefront,
                          d_oap5_fpm + fpm_z_shift_m,
                          'FPM',
                          TO_PLANE=True)
    if use_fpm == 1:
        if fpm_x_offset != 0 or fpm_y_offset != 0 or fpm_x_offset_m != 0 or fpm_y_offset_m != 0:
            # To shift FPM, FFT field to pupil, apply tilt, FFT back to focus,
            # apply FPM, FFT to pupil, take out tilt, FFT back to focus
            if fpm_x_offset != 0 or fpm_y_offset != 0:
                # shifts are specified in lambda0/D
                x_offset_lamD = fpm_x_offset * lambda0_m / lambda_m
                y_offset_lamD = fpm_y_offset * lambda0_m / lambda_m
            else:
                d_m = proper.prop_get_sampling(wavefront)
                x_offset_lamD = fpm_x_offset_m / d_m * float(
                    pupil_diam_pix) / n
                y_offset_lamD = fpm_y_offset_m / d_m * float(
                    pupil_diam_pix) / n
            x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0),
                        (n, 1))
            y = np.transpose(x)
            tilt = complex(0,
                           1) * np.pi * (x * x_offset_lamD + y * y_offset_lamD)
            x = 0
            y = 0
            wavefront0 = proper.prop_get_wavefront(wavefront)
            wavefront0 = ffts(wavefront0, -1)
            wavefront0 *= np.exp(tilt)
            wavefront0 = ffts(wavefront0, 1)
            wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
            wavefront0 = 0
        if is_hlc == True:
            occ_r = proper.prop_fits_read(occulter_file_r)
            occ_i = proper.prop_fits_read(occulter_file_i)
            occ = np.array(occ_r + 1j * occ_i, dtype=np.complex128)
            proper.prop_multiply(wavefront, trim(occ, n))
            occ_r = 0
            occ_i = 0
            occ = 0
        elif is_spc == True:
            # super-sample FPM
            wavefront0 = proper.prop_get_wavefront(wavefront)
            wavefront0 = ffts(wavefront0, 1)  # to virtual pupil
            wavefront0 = trim(wavefront0, n_mft)
            fpm = proper.prop_fits_read(fpm_file)
            nfpm = fpm.shape[1]
            fpm_sampling_lam = fpm_sampling * fpm_sampling_lambda_m / lambda_m
            wavefront0 = mft2(wavefront0, fpm_sampling_lam, pupil_diam_pix,
                              nfpm, -1)  # MFT to highly-sampled focal plane
            wavefront0 *= fpm
            fpm = 0
            wavefront0 = mft2(wavefront0, fpm_sampling_lam, pupil_diam_pix, n,
                              +1)  # MFT to virtual pupil
            wavefront0 = ffts(wavefront0,
                              -1)  # back to normally-sampled focal plane
            wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
            wavefront0 = 0
        if fpm_x_offset != 0 or fpm_y_offset != 0 or fpm_x_offset_m != 0 or fpm_y_offset_m != 0:
            wavefront0 = proper.prop_get_wavefront(wavefront)
            wavefront0 = ffts(wavefront0, -1)
            wavefront0 *= np.exp(-tilt)
            wavefront0 = ffts(wavefront0, 1)
            wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
            wavefront0 = 0
            tilt = 0
    if pinhole_diam_m != 0:
        # "pinhole_diam_m" is pinhole diameter in meters
        dx_m = proper.prop_get_sampling(wavefront)
        dx_pinhole_diam_m = pinhole_diam_m / 101.0  # 101 samples across pinhole
        n_out = 105
        m_per_lamD = dx_m * n / float(
            pupil_diam_pix)  # current focal plane sampling in lambda_m/D
        dx_pinhole_lamD = dx_pinhole_diam_m / m_per_lamD  # pinhole sampling in lambda_m/D
        n_in = int(round(pupil_diam_pix * 1.2))
        wavefront0 = proper.prop_get_wavefront(wavefront)
        wavefront0 = ffts(wavefront0, +1)  # to virtual pupil
        wavefront0 = trim(wavefront0, n_in)
        m = dx_pinhole_lamD * n_in * float(n_out) / pupil_diam_pix
        wavefront0 = mft2(wavefront0, dx_pinhole_lamD, pupil_diam_pix, n_out,
                          -1)  # MFT to highly-sampled focal plane
        p = (radius(n_out) * dx_pinhole_diam_m) <= (pinhole_diam_m / 2.0)
        p = p.astype(np.int)
        wavefront0 *= p
        p = 0
        wavefront0 = mft2(wavefront0, dx_pinhole_lamD, pupil_diam_pix, n,
                          +1)  # MFT back to virtual pupil
        wavefront0 = ffts(wavefront0,
                          -1)  # back to normally-sampled focal plane
        wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
        wavefront0 = 0

    proper.prop_propagate(wavefront, d_fpm_oap6 - fpm_z_shift_m, 'OAP6')
    proper.prop_lens(wavefront, fl_oap6)
    if use_errors != 0 and end_at_fpm_exit_pupil == 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP6_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap6 / 2.0)

    proper.prop_propagate(wavefront, d_oap6_lyotstop, 'LYOT_STOP')
    # while at a pupil, switch back to less padding
    diam = 2 * proper.prop_get_beamradius(wavefront)
    (wavefront, dx) = proper.prop_end(wavefront, NOABS=True)
    n = n_from_lyotstop
    wavefront = trim(wavefront, n)
    if output_field_rootname != '':
        lams = format(lambda_m * 1e6, "6.4f")
        pols = format(int(round(polaxis)))
        hdu = pyfits.PrimaryHDU()
        hdu.data = np.real(wavefront)
        hdu.writeto(output_field_rootname + '_' + lams + 'um_' + pols +
                    '_real.fits',
                    overwrite=True)
        hdu = pyfits.PrimaryHDU()
        hdu.data = np.imag(wavefront)
        hdu.writeto(output_field_rootname + '_' + lams + 'um_' + pols +
                    '_imag.fits',
                    overwrite=True)
    if end_at_fpm_exit_pupil == 1:
        return wavefront, dx
    wavefront0 = wavefront.copy()
    wavefront = 0
    wavefront = proper.prop_begin(diam, lambda_m, n, float(pupil_diam_pix) / n)
    wavefront.wfarr[:, :] = proper.prop_shift_center(wavefront0)
    wavefront0 = 0

    if use_lyot_stop != 0:
        lyot = proper.prop_fits_read(lyot_stop_file)
        lyot = trim(lyot, n)
        if lyot_x_shift_pupdiam != 0 or lyot_y_shift_pupdiam != 0 or lyot_x_shift_m != 0 or lyot_y_shift_m != 0:
            # apply shift to lyot stop by FFTing the stop, applying a tilt, and FFTing back
            if lyot_x_shift_pupdiam != 0 or lyot_y_shift_pupdiam != 0:
                # offsets are normalized to pupil diameter
                xt = -lyot_x_shift_pupdiam * pupil_diam_pix * float(
                    pupil_diam_pix) / n
                yt = -lyot_y_shift_pupdiam * pupil_diam_pix * float(
                    pupil_diam_pix) / n
            else:
                d_m = proper.prop_get_sampling(wavefront)
                xt = -lyot_x_shift_m / d_m * float(pupil_diam_pix) / n
                yt = -lyot_y_shift_m / d_m * float(pupil_diam_pix) / n
            x = np.tile((np.arange(n) - n // 2) / (pupil_diam_pix / 2.0),
                        (n, 1))
            y = np.transpose(x)
            tilt = complex(0, 1) * np.pi * (x * xt + y * yt)
            x = 0
            y = 0
            lyot = ffts(lyot, -1)
            lyot *= np.exp(tilt)
            lyot = ffts(lyot, 1)
            lyot = lyot.real
            tilt = 0
        proper.prop_multiply(wavefront, lyot)
        lyot = 0
    if use_pupil_lens != 0 or pinhole_diam_m != 0:
        proper.prop_circular_aperture(wavefront, 1.1, NORM=True)

    proper.prop_propagate(wavefront, d_lyotstop_oap7, 'OAP7')
    proper.prop_lens(wavefront, fl_oap7)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP7_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap7 / 2.0)

    proper.prop_propagate(wavefront, d_oap7_fieldstop, 'FIELD_STOP')
    if use_field_stop != 0 and (cor_type == 'hlc' or cor_type == 'hlc_erkin'):
        sampling_lamD = float(
            pupil_diam_pix) / n  # sampling at focus in lambda_m/D
        stop_radius = field_stop_radius_lam0 / sampling_lamD * (
            lambda0_m / lambda_m) * proper.prop_get_sampling(wavefront)
        if field_stop_x_offset != 0 or field_stop_y_offset != 0:
            # convert offsets in lambda0/D to meters
            x_offset_lamD = field_stop_x_offset * lambda0_m / lambda_m
            y_offset_lamD = field_stop_y_offset * lambda0_m / lambda_m
            pupil_ratio = float(pupil_diam_pix) / n
            field_stop_x_offset_m = x_offset_lamD / pupil_ratio * proper.prop_get_sampling(
                wavefront)
            field_stop_y_offset_m = y_offset_lamD / pupil_ratio * proper.prop_get_sampling(
                wavefront)
        proper.prop_circular_aperture(wavefront, stop_radius,
                                      -field_stop_x_offset_m,
                                      -field_stop_y_offset_m)

    proper.prop_propagate(wavefront, d_fieldstop_oap8, 'OAP8')
    proper.prop_lens(wavefront, fl_oap8)
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_OAP8_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_oap8 / 2.0)

    proper.prop_propagate(wavefront, d_oap8_filter, 'filter')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FILTER_phase_error_V1.0.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_filter / 2.0)

    proper.prop_propagate(wavefront, d_filter_lens, 'LENS')
    if use_pupil_lens == 0 and use_defocus_lens == 0 and defocus == 0:
        # use imaging lens to create normal focus
        proper.prop_lens(wavefront, fl_lens)
        if use_errors != 0:
            proper.prop_errormap(wavefront,
                                 map_dir +
                                 'wfirst_phaseb_LENS_phase_error_V1.0.fits',
                                 WAVEFRONT=True)
    elif use_pupil_lens != 0:
        # use pupil imaging lens
        proper.prop_lens(wavefront, fl_pupillens)
        if use_errors != 0:
            proper.prop_errormap(
                wavefront,
                map_dir + 'wfirst_phaseb_PUPILLENS_phase_error_V1.0.fits',
                WAVEFRONT=True)
    else:
        # table is waves P-V @ 575 nm
        z4_pv_waves = np.array([
            -9.0545, -8.5543, -8.3550, -8.0300, -7.54500, -7.03350, -6.03300,
            -5.03300, -4.02000, -2.51980, 0.00000000, 3.028000, 4.95000,
            6.353600, 8.030000, 10.10500, 12.06000, 14.06000, 20.26000,
            28.34000, 40.77500, 56.65700
        ])
        fl_defocus_lens = np.array([
            5.09118, 1.89323, 1.54206, 1.21198, 0.914799, 0.743569, 0.567599,
            0.470213, 0.406973, 0.350755, 0.29601868, 0.260092, 0.24516,
            0.236606, 0.228181, 0.219748, 0.213278, 0.207816, 0.195536,
            0.185600, 0.176629, 0.169984
        ])
        # subtract ad-hoc function to make z4 vs f_length more accurately spline interpolatible
        f = fl_defocus_lens / 0.005
        f0 = 59.203738
        z4t = z4_pv_waves - (0.005 * (f0 - f - 40)) / f**2 / 0.575e-6
        if use_defocus_lens != 0:
            # use one of 4 defocusing lenses
            defocus = np.array([18.0, 9.0, -4.0, -8.0])  # waves P-V @ 575 nm
            f = interp1d(z4_pv_waves, z4t, kind='cubic')
            z4x = f(defocus)
            f = interp1d(z4t, fl_defocus_lens, kind='cubic')
            lens_fl = f(z4x)
            proper.prop_lens(wavefront, lens_fl[use_defocus_lens - 1])
            if use_errors != 0:
                proper.prop_errormap(wavefront,
                                     map_dir + 'wfirst_phaseb_DEFOCUSLENS' +
                                     str(use_defocus_lens) +
                                     '_phase_error_V1.0.fits',
                                     WAVEFRONT=True)
            defocus = defocus[use_defocus_lens - 1]
        else:
            # specify amount of defocus (P-V waves @ 575 nm)
            f = interp1d(z4_pv_waves, z4t, kind='cubic')
            z4x = f(defocus)
            f = interp1d(z4t, fl_defocus_lens, kind='cubic')
            lens_fl = f(z4x)
            proper.prop_lens(wavefront, lens_fl)
            if use_errors != 0:
                proper.prop_errormap(
                    wavefront,
                    map_dir +
                    'wfirst_phaseb_DEFOCUSLENS1_phase_error_V1.0.fits',
                    WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_lens / 2.0)

    proper.prop_propagate(wavefront, d_lens_fold4, 'FOLD_4')
    if use_errors != 0:
        proper.prop_errormap(wavefront,
                             map_dir +
                             'wfirst_phaseb_FOLD4_phase_error_V1.1.fits',
                             WAVEFRONT=True)
    if use_aperture != 0:
        proper.prop_circular_aperture(wavefront, diam_fold4 / 2.0)

    if defocus != 0 or use_defocus_lens != 0:
        if np.abs(defocus) <= 4:
            proper.prop_propagate(wavefront,
                                  d_fold4_image,
                                  'IMAGE',
                                  TO_PLANE=True)
        else:
            proper.prop_propagate(wavefront, d_fold4_image, 'IMAGE')
    else:
        proper.prop_propagate(wavefront, d_fold4_image, 'IMAGE')

    (wavefront, sampling_m) = proper.prop_end(wavefront, NOABS=True)

    if final_sampling_lam0 != 0 or final_sampling_m != 0:
        if final_sampling_m != 0:
            mag = sampling_m / final_sampling_m
            sampling_m = final_sampling_m
        else:
            mag = (float(pupil_diam_pix) /
                   n) / final_sampling_lam0 * (lambda_m / lambda0_m)
            sampling_m = sampling_m / mag
        wavefront = proper.prop_magnify(wavefront,
                                        mag,
                                        output_dim,
                                        AMP_CONSERVE=True)
    else:
        wavefront = trim(wavefront, output_dim)

    return wavefront, sampling_m
Esempio n. 13
0
def propcustom_dm(wf, dm_z0, dm_xc, dm_yc, spacing=0., **kwargs):
    """
    Generate a deformable mirror surface almost exactly like PROPER.

    Simulate a deformable mirror of specified actuator spacing, including the
    effects of the DM influence function. Has two more optional keywords
    compared to  proper.prop_dm

    Parameters
    ----------
    wf : obj
        WaveFront class object
    dm_z0 : str or numpy ndarray
        Either a 2D numpy array containing the surface piston of each DM
        actuator in meters or the name of a 2D FITS image file containing the
        above
    dm_xc, dm_yc : list or numpy ndarray
        The location of the optical axis (center of the wavefront) on the DM in
        actuator units (0 ro num_actuator-1). The center of the first actuator
        is (0.0, 0.0)
    spacing : float
        Defines the spacing in meters between actuators; must not be used when
        n_act_across_pupil is specified.

    Returns
    -------
    dmap : numpy ndarray
        Returns DM surface (not wavefront) map in meters

    Other Parameters
    ----------------
    FIT : bool
        Switch that tells routine that the values in "dm_z" are the desired
        surface heights rather than commanded actuator heights, and so the
        routine should fit this map, accounting for actuator influence functions,
        to determine the necessary actuator heights. An iterative error-minimizing
        loop is used for the fit.
    NO_APPLY : bool
        If set, the DM pattern is not added to the wavefront. Useful if the DM
        surface map is needed but should not be applied to the wavefront
    N_ACT_ACROSS_PUPIL : int
        Specifies the number of actuators that span the X-axis beam diameter. If
        it is a whole number, the left edge of the left pixel is aligned with
        the left edge of the beam, and the right edge of the right pixel with
        the right edge of the beam. This determines the spacing and size of the
        actuators. Should not be used when "spacing" value is specified.
    XTILT, YTILT, ZTILT : float
        Specify the rotation of the DM surface with respect to the wavefront plane
        in degrees about the X, Y, Z axes, respectively, with the origin at the
        center of the wavefront. The DM surface is interpolated and orthographically
        projected onto the wavefront grid. The coordinate system assumes that
        the wavefront and initial DM surface are in the X,Y plane with a lower
        left origin with Z towards the observer. The rotations are left handed.
        The default rotation order is X, Y, then Z unless the /ZYX switch is set.
    XYZ or ZYX : bool
        Specifies the rotation order if two or more of XTILT, YTILT, or ZTILT
        are specified. The default is /XYZ for X, Y, then Z rotations.
    inf_fn : string
        specify a new influence function as a FITS file with the same header keywords as 
        PROPER's default influence function. Needs these values in info.PrimaryData.Keywords:
            'P2PDX_M' % pixel width x (m)
            'P2PDY_M' % pixel width y (m)
            'C2CDX_M' % actuator pitch x (m)
            'C2CDY_M' % actuator pitch y (m)
    inf_sign : {+,-}
        specifies the sign (+/-) of the influence function. Given as an option because 
        the default influence function file is positive, but positive DM actuator 
        commands make a negative deformation for Xinetics and BMC DMs.

    Raises
    ------
    ValueError:
        User cannot specify both actuator spacing and N_ACT_ACROSS_PUPIL
    ValueError:
        User must specify either actuator spacing or N_ACT_ACROSS_PUPIL
    """
    if "ZYX" in kwargs and "XYZ" in kwargs:
        raise ValueError('PROP_DM: Error: Cannot specify both XYZ and ZYX ' +
                         'rotation orders. Stopping')
    elif "ZYX" not in kwargs and 'XYZ' not in kwargs:
        XYZ = 1  # default is rotation around X, then Y, then Z
        # ZYX = 0
    elif "ZYX" in kwargs:
        # ZYX = 1
        XYZ = 0
    elif "XYZ" in kwargs:
        XYZ = 1
        # ZYX = 0

    if "XTILT" in kwargs:
        xtilt = kwargs["XTILT"]
    else:
        xtilt = 0.

    if "YTILT" in kwargs:
        ytilt = kwargs["YTILT"]
    else:
        ytilt = 0.

    if "ZTILT" in kwargs:
        ztilt = kwargs["ZTILT"]
    else:
        ztilt = 0.

    if type(dm_z0) == str:
        dm_z = proper.prop_fits_read(dm_z0)  # Read DM setting from FITS file
    else:
        dm_z = dm_z0
    
    if "inf_fn" in kwargs:
        inf_fn = kwargs["inf_fn"]
    else:
        inf_fn = "influence_dm5v2.fits"
        
    if "inf_sign" in kwargs:
        if(kwargs["inf_sign"] == '+'):
            sign_factor = 1.
        elif(kwargs["inf_sign"] == '-'):
            sign_factor = -1.
    else:
        sign_factor = 1.

    n = proper.prop_get_gridsize(wf)
    dx_surf = proper.prop_get_sampling(wf)  # sampling of surface in meters
    beamradius = proper.prop_get_beamradius(wf)

    # Default influence function sampling is 0.1 mm, peak at (x,y)=(45,45)
    # Default influence function has shape = 1x91x91. Saving it as a 2D array
    # before continuing with processing
    dir_path = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                            "data")
    inf = proper.prop_fits_read(os.path.join(dir_path, inf_fn))
    inf = sign_factor*np.squeeze(inf)
    
    s = inf.shape
    nx_inf = s[1]
    ny_inf = s[0]
    xc_inf = nx_inf // 2
    yc_inf = ny_inf // 2
    dx_inf = 0.1e-3  # influence function spacing in meters
    dx_dm_inf = 1.0e-3  # nominal spacing between DM actuators in meters
    inf_mag = 10

    if spacing != 0 and "N_ACT_ACROSS_PUPIL" in kwargs:
        raise ValueError("PROP_DM: User cannot specify both actuator spacing" +
                         "and N_ACT_ACROSS_PUPIL. Stopping.")

    if spacing == 0 and "N_ACT_ACROSS_PUPIL" not in kwargs:
        raise ValueError("PROP_DM: User must specify either actuator spacing" +
                         " or N_ACT_ACROSS_PUPIL. Stopping.")

    if "N_ACT_ACROSS_PUPIL" in kwargs:
        dx_dm = 2. * beamradius / int(kwargs["N_ACT_ACROSS_PUPIL"])
    else:
        dx_dm = spacing

    dx_inf = dx_inf * dx_dm / dx_dm_inf  # Influence function sampling scaled
                                         # to specified DM actuator spacing

    if "FIT" in kwargs:
        x = (np.arange(5, dtype=np.float64) - 2) * dx_dm

        if proper.use_cubic_conv:
            inf_kernel = proper.prop_cubic_conv(inf.T, x/dx_inf+xc_inf,
                                                x/dx_inf+yc_inf, GRID=True)
        else:
            xygrid = np.meshgrid(x/dx_inf+xc_inf, x/dx_inf+yc_inf)
            inf_kernel = map_coordinates(inf.T, xygrid, order=3,
                                         mode="nearest")

        (dm_z_commanded, dms) = proper.prop_fit_dm(dm_z, inf_kernel)
    else:
        dm_z_commanded = dm_z

    s = dm_z.shape
    nx_dm = s[1]
    ny_dm = s[0]

    # Create subsampled DM grid
    margin = 9 * inf_mag
    nx_grid = nx_dm * inf_mag + 2 * margin
    ny_grid = ny_dm * inf_mag + 2 * margin
    xoff_grid = margin + inf_mag/2           # pixel location of 1st actuator center in subsampled grid
    yoff_grid = xoff_grid
    dm_grid = np.zeros([ny_grid, nx_grid], dtype = np.float64)

    x = np.arange(nx_dm, dtype=int) * int(inf_mag) + int(xoff_grid)
    y = np.arange(ny_dm, dtype=int) * int(inf_mag) + int(yoff_grid)
    dm_grid[np.tile(np.vstack(y), (nx_dm,)),
            np.tile(x, (ny_dm, 1))] = dm_z_commanded
    dm_grid = ss.fftconvolve(dm_grid, inf, mode='same')
    
    # 3D rotate DM grid and project orthogonally onto wavefront
    xdim = int(np.round(np.sqrt(2) * nx_grid * dx_inf / dx_surf)) # grid dimensions (pix) projected onto wavefront
    ydim = int(np.round(np.sqrt(2) * ny_grid * dx_inf / dx_surf))

    if xdim > n: xdim = n

    if ydim > n: ydim = n

    x = np.ones((ydim, 1), dtype=int) * ((np.arange(xdim) - xdim // 2) * dx_surf)
    y = (np.ones((xdim, 1), dtype=int) * ((np.arange(ydim) - ydim // 2) * dx_surf)).T

    a = xtilt * np.pi / 180
    b = ytilt * np.pi / 180
    g = ztilt * np.pi /180

    if XYZ:
        m = np.array([[cos(b)*cos(g), -cos(b)*sin(g), sin(b), 0],
            [cos(a)*sin(g) + sin(a)*sin(b)*cos(g), cos(a)*cos(g)-sin(a)*sin(b)*sin(g), -sin(a)*cos(b), 0],
            [sin(a)*sin(g)-cos(a)*sin(b)*cos(g), sin(a)*cos(g)+cos(a)*sin(b)*sin(g), cos(a)*cos(b), 0],
            [0, 0, 0, 1] ])
    else:
        m = np.array([	[cos(b)*cos(g), cos(g)*sin(a)*sin(b)-cos(a)*sin(g), cos(a)*cos(g)*sin(b)+sin(a)*sin(g), 0],
            [cos(b)*sin(g), cos(a)*cos(g)+sin(a)*sin(b)*sin(g), -cos(g)*sin(a)+cos(a)*sin(b)*sin(g), 0],
            [-sin(b), cos(b)*sin(a), cos(a)*cos(b), 0],
            [0, 0, 0, 1] ])

    # Forward project a square
    edge = np.array([[-1.0, -1.0, 0.0, 0.0],
                     [1.0, -1.0, 0.0, 0.0],
                     [1.0, 1.0, 0.0, 0.0],
                     [-1.0, 1.0, 0.0, 0.0]])
    new_xyz = np.dot(edge, m)

    # determine backward projection for screen-raster-to-DM-surce computation
    dx_dxs = (new_xyz[0, 0] - new_xyz[1, 0]) / (edge[0, 0] - edge[1, 0])
    dx_dys = (new_xyz[1, 0] - new_xyz[2, 0]) / (edge[1, 1] - edge[2, 1])
    dy_dxs = (new_xyz[0, 1] - new_xyz[1, 1]) / (edge[0, 0] - edge[1, 0])
    dy_dys = (new_xyz[1, 1] - new_xyz[2, 1]) / (edge[1, 1] - edge[2, 1])

    xs = (x/dx_dxs - y*dx_dys/(dx_dxs*dy_dys)) / \
        (1 - dy_dxs*dx_dys/(dx_dxs*dy_dys))
    ys = (y/dy_dys - x*dy_dxs/(dx_dxs*dy_dys)) / \
        (1 - dx_dys*dy_dxs/(dx_dxs*dy_dys))

    xdm = (xs + dm_xc * dx_dm) / dx_inf + xoff_grid
    ydm = (ys + dm_yc * dx_dm) / dx_inf + yoff_grid

    if proper.use_cubic_conv:
        grid = proper.prop_cubic_conv(dm_grid.T, xdm, ydm, GRID = False)
        grid = grid.reshape([xdm.shape[1], xdm.shape[0]])
    else:
        grid = map_coordinates(dm_grid.T, [xdm, ydm], order=3,
                               mode="nearest", prefilter = True)

    dmap = np.zeros([n, n], dtype=np.float64)
    nx_grid, ny_grid = grid.shape
    xmin, xmax = n // 2 - xdim // 2, n // 2 - xdim // 2 + nx_grid
    ymin, ymax = n // 2 - ydim // 2, n // 2 - ydim // 2 + ny_grid
    dmap[ymin:ymax, xmin:xmax] = grid

    if "NO_APPLY" not in kwargs:
        proper.prop_add_phase(wf, 2 * dmap)  # convert surface to WFE

    return dmap
Esempio n. 14
0
def errormap(wf, dm_map, xshift=0., yshift=0., **kwargs):
    """Read in a surface, wavefront, or amplitude error map from a FITS file. 
    
    Map is assumed to be in meters of surface error. One (and only one) of the 
    MIRROR_SURFACE, WAVEFRONT, or AMPLITUDE switches must be specified in order 
    to properly apply the map to the wavefront.  For surface or wavefront error 
    maps, the map values are assumed to be in meters, unless the NM or MICRONS 
    switches are used to specify the units. The amplitude map must range 
    from 0 to 1.  The map will be interpolated to match the current wavefront 
    sampling if necessary.
    
    Parameters
    ----------
    wf : obj
        WaveFront class object
        
    dm_map : 2D numpy array
        the DM map in units of surface deformation
        
    xshify, yshift : float
        Amount to shift map (meters) in X,Y directions
    
    Returns
    -------
    DMAP : numpy ndarray
        Returns map (after any necessary resampling) if set.
    
    
    Other Parameters
    ----------------
    XC_MAP, YC_MAP : float
        Pixel coordinates of map center (Assumed n/2,n/2)
        
    SAMPLING : float
        Sampling of map in meters
        
    ROTATEMAP : float
        Degrees counter-clockwise to rotate map, after any resampling and 
        shifting
        
    MULTIPLY : float
        Multiplies the map by the specified factor
        
    MAGNIFY : float
        Spatially magnify the map by a factor of "constant" from its default
        size; do not use if SAMPLING is specified
        
    MIRROR_SURFACE : bool
        Indicates file contains a mirror surface height error map; It assumes a 
        positive value indicates a surface point higher than the mean surface.  
        The map will be multiplied by -2 to convert it to a wavefront map to 
        account for reflection and wavefront delay (a low region on the surface 
        causes a positive increase in the phase relative to the mean)
        
    WAVEFRONT : bool
        Indicates file contains a wavefront error map
        
    AMPLITUDE : bool
        Indicates file contains an amplitude error map
        
    NM or MICRONS : bool
        Indicates map values are in nanometers or microns. For surface or 
        wavefront maps only
        
    Raises
    ------
    SystemExit:
        If AMPLITUDE and (NM or MICRONS) parameters are input.
        
    SystemExit:
        If NM and MICRONS parameteres are input together. 
        
    ValueError:
        If map type is MIRROR_SURFACE, WAVEFRONT, or AMPLITUDE.
    """
    if ("AMPLITUDE" in kwargs and kwargs["AMPLITUDE"]) \
       and (("NM" in kwargs and kwargs["NM"]) \
       or ("MICRONS" in kwargs and kwargs["MICRONS"])):
        raise SystemExit(
            "ERRORMAP: Cannot specify NM or MICRON for an amplitude map")

    if ("NM" in kwargs and kwargs["NM"]) and \
       ("MICRONS" in kwargs and kwargs["MICRONS"]):
        raise SystemExit("ERRORMAP: Cannot specify both NM and MICRONS")

    if not "XC_MAP" in kwargs:
        s = dm_map.shape
        xc = s[
            0] // 2  # center of map read-in (xc should be 25 for SCExAO DM maps)
        yc = s[1] // 2
    else:
        xc = kwargs["XC_MAP"]
        yc = kwargs["YC_MAP"]

    # KD edit: try to get the dm map to apply only in regions of the beam
    n = proper.prop_get_gridsize(wf)  #
    new_sampling = proper.prop_get_sampling(
        wf)  #kwargs["SAMPLING"]  #*dm_map.shape[0]/npix_across_beam
    if new_sampling > (kwargs["SAMPLING"] + kwargs["SAMPLING"]*.1) or \
        new_sampling < (kwargs["SAMPLING"] - kwargs["SAMPLING"]*.1):
        dm_map = proper.prop_resamplemap(wf, dm_map, kwargs["SAMPLING"], 0, 0)
        dm_map = dm_map[n // 2:n // 2 + xc * 4, n // 2:n // 2 + xc * 4]
        # print(f'User-defined samping is {kwargs["SAMPLING"]:.6f} but proper wavefront has sampling of '
        #       f'{new_sampling:.6f}')
        warnings.warn(
            f'User-defined beam ratio does not produce aperture sampling consistent with SCExAO actuator '
            f'spacing. Resampling Map')

    # resample dm_map to size of beam in the simulation
    # grid = proper.prop_resamplemap(wf, dm_map, new_sampling, xc, yc, xshift, yshift)
    dmap = np.zeros((wf.wfarr.shape[0], wf.wfarr.shape[1]))
    r = dmap.shape
    xrc = r[0] // 2
    yrc = r[1] // 2
    dmap[xrc - xc * 2:xrc + xc * 2, yrc - yc * 2:yrc + yc * 2] = dm_map

    # Create mask to eliminate resampling artifacts outside of beam
    if ("MASKING" in kwargs and kwargs["MASKING"]):
        h, w = wf.wfarr.shape[:2]
        center = (int(w / 2), int(h / 2))
        radius = np.ceil(h * kwargs['BR'] / 2)  #
        # Making the Circular Boolean Mask
        Y, X = np.mgrid[:h, :w]
        dist_from_center = np.sqrt((X - center[0])**2 + (Y - center[1])**2)
        inds = dist_from_center <= radius
        # Applying the Mask to the dm_map
        mask = np.zeros_like(dmap)
        mask[inds] = 1
        dmap *= mask

    # Shift the center of dmap to 0,0
    dmap = proper.prop_shift_center(dmap)

    if kwargs['PLOT']:
        import matplotlib.pyplot as plt
        from matplotlib.colors import LogNorm, SymLogNorm

        fig, subplot = plt.subplots(nrows=1, ncols=2, figsize=(12, 5))
        ax1, ax2 = subplot.flatten()
        fig.suptitle(f'RTC DM Voltage Maps')

        ax1.imshow(
            dm_map, norm=SymLogNorm(1e-2)
        )  # LogNorm(vmin=np.min(dm_map),vmax=np.max(dm_map))  SymLogNorm(1e-2)
        ax1.set_title('DM Map Read In')
        ax2.imshow(proper.prop_shift_center(
            dmap))  #  , cmap='hsv' must shift the center because
        # proper assumes dmap center is 0,0, so we need to shift it back to plot properly
        ax2.set_title('DM Map in Center of Proper simulated beam')

    if "ROTATEMAP" in kwargs or "MAGNIFY" in kwargs:
        # readmap stores map with center at (0,0), so shift
        # before and after rotation
        dmap = proper.prop_shift_center(dmap)
        if "ROTATEMAP" in kwargs:
            dmap = proper.prop_rotate(dmap,
                                      kwargs["ROTATEMAP"],
                                      CUBIC=-0.5,
                                      MISSING=0.0)
        if "MAGNIFY" in kwargs:
            dmap = proper.prop_magnify(dmap, kwargs["MAGNIFY"], dmap.shape[0])
            dmap = proper.prop_shift_center(dmap)

    if ("MICRONS" in kwargs and kwargs["MICRONS"]):
        dmap *= 1.e-6

    if ("NM" in kwargs and kwargs["NM"]):
        dmap *= 1.e-9

    if "MULTIPLY" in kwargs:
        dmap *= kwargs["MULTIPLY"]

    i = complex(0., 1.)

    if ("MIRROR_SURFACE" in kwargs and kwargs["MIRROR_SURFACE"]):
        wf.wfarr *= np.exp(-4 * np.pi * i / wf.lamda * dmap)  # Krist version
    elif "WAVEFRONT" in kwargs:
        wf.wfarr *= np.exp(2 * np.pi * i / wf.lamda * dmap)
    elif "AMPLITUDE" in kwargs:
        wf.wfarr *= dmap
    else:
        raise ValueError(
            "ERRORMAP: Unspecified map type: Use MIRROR_SURFACE, WAVEFRONT, or AMPLITUDE"
        )

    # check1 = proper.prop_get_sampling(wf)
    # print(f"\n\tErrormap Sampling\n"
    #       f"sampling in errormap.py is {check1 * 1e3:.4f} mm\n")

    return dmap
Esempio n. 15
0
def Hubble_frontend(empty_lamda, grid_size, PASSVALUE):
    """
    propagates instantaneous complex E-field tSubaru from the primary through the AO188
        AO system in loop over wavelength range

    this function is called a 'prescription' by proper

    uses PyPROPER3 to generate the complex E-field at the source, then propagates it through atmosphere,
        then telescope, to the focal plane
    the AO simulator happens here
    this does not include the observation of the wavefront by the detector
    :returns spectral cube at instantaneous time, sampling of the wavefront at final location

    """
    # print("Propagating Broadband Wavefront Through Hubble Telescope")

    # Getting Parameters-import statements weren't working--RD
    passpara = PASSVALUE['params']
    ap.__dict__ = passpara[0].__dict__
    tp.__dict__ = passpara[1].__dict__
    iop.__dict__ = passpara[2].__dict__
    sp.__dict__ = passpara[3].__dict__

    datacube = []

    # Initialize the Wavefront in Proper
    wfo = opx.Wavefronts()
    wfo.initialize_proper()

    ########################################
    # Hubble Propagation
    #######################################
    # Defines aperture (baffle-before primary)
    wfo.loop_collection(proper.prop_circular_aperture,
                        **{'radius':
                           tp.entrance_d / 2})  # clear inside, dark outside
    # Obscurations
    wfo.loop_collection(opx.add_obscurations,
                        d_primary=tp.entrance_d,
                        d_secondary=tp.d_secondary,
                        legs_frac=0.01)
    wfo.loop_collection(
        proper.prop_define_entrance)  # normalizes the intensity

    # Test Sampling
    if PASSVALUE['iter'] == 1:
        initial_sampling = proper.prop_get_sampling(wfo.wf_collection[0, 0])
        dprint(f"initial sampling is {initial_sampling:.4f}")

    # Primary
    # CPA from Effective Primary
    # aber.add_aber(wfo.wf_collection, tp.entrance_d, step=PASSVALUE['iter'], lens_name='primary')

    # wfo.loop_collection(opx.prop_pass_lens, tp.flen_primary, tp.flen_primary)
    wfo.loop_collection(opx.prop_pass_lens, tp.flen_primary,
                        tp.dist_pri_second)

    # Secondary
    # aber.add_aber(wfo.wf_collection, tp.d_secondary, step=PASSVALUE['iter'], lens_name='second')
    # # Zernike Aberrations- Low Order
    # wfo.loop_collection(aber.add_zern_ab, tp.zernike_orders, tp.zernike_vals)
    wfo.loop_collection(opx.prop_pass_lens, tp.flen_secondary,
                        tp.dist_second_focus)

    ########################################
    # Focal Plane
    # #######################################
    # Converting Array of Arrays (wfo) into 3D array
    #  wavefront array is now (number_wavelengths x number_astro_bodies x sp.grid_size x sp.grid_size)
    #  prop_end moves center of the wavefront from lower left corner (Fourier space) back to the center
    #    ^      also takes square modulus of complex values, so gives units as intensity not field
    shape = wfo.wf_collection.shape
    for iw in range(shape[0]):
        for io in range(shape[1]):
            if sp.maskd_size != sp.grid_size:
                wframes = np.zeros((sp.maskd_size, sp.maskd_size))
                (wframe,
                 sampling) = proper.prop_end(wfo.wf_collection[iw, io],
                                             EXTRACT=np.int(sp.maskd_size))
            else:
                wframes = np.zeros((sp.grid_size, sp.grid_size))
                (wframe, sampling) = proper.prop_end(wfo.wf_collection[
                    iw, io])  # Sampling returned by proper is in m
            wframes += wframe  # adds 2D wavefront from all astro_bodies together into single wavefront, per wavelength
        # dprint(f"sampling in focal plane at wavelength={iw} is {sampling} m")
        datacube.append(
            wframes)  # puts each wavlength's wavefront into an array
        # (number_wavelengths x sp.grid_size x sp.grid_size)

    datacube = np.array(datacube)
    datacube = np.roll(np.roll(datacube, tp.pix_shift[0], 1), tp.pix_shift[1],
                       2)  # cirshift array for off-axis observing
    datacube = np.abs(datacube)  # get intensity from datacube

    # Interpolating spectral cube from ap.n_wvl_init discreet wavelengths to ap.n_wvl_final
    if ap.interp_wvl and ap.n_wvl_init > 1 and ap.n_wvl_init < ap.n_wvl_final:
        wave_samps = np.linspace(0, 1, ap.n_wvl_init)
        f_out = interp1d(wave_samps, datacube, axis=0)
        new_heights = np.linspace(0, 1, ap.n_wvl_final)
        datacube = f_out(new_heights)

    print('Finished datacube at single timestep')

    return datacube, sampling
Esempio n. 16
0
def propcustom_zernikes(a, zernike_num, zernike_val, eps=0., **kwargs):
    """
    Add Zernike-polynomial wavefront errors to current wavefront.
    
    Noll ordering is used and a circular system is assumed. An arbitrary number
    of Zernikes normalized for an unobscured circular region can be computed,
    but only the first 22 Zernikes can be computed normalized for a
    centrally-obscured region.
    
    
    Parameters
    ----------
    a : object
        WaveFront class object
        
    zernike_num : numpy ndarray
        Scalar or 1D array specifying which Zernike polynomials to include
        
    zernike_val : numpy ndarray
        Scalar or 1D array containing Zernike coefficients (in meters of RMS
        wavefront phase error or dimensionless RMS amplitude error) for Zernike
        polynomials indexed by "zernike_num".
        
    eps : float
        Central obscuration ratio (0.0-1.0); default is 0.0
        
    
    Returns
    -------
        None
        Adds wavefront errors to current wavefront array
        
    dmap : numpy ndarray
        Aberration map
        
    
    Other Parameters
    ----------------
    AMPLITUDE : bool
        Optional keyword that specifies that the Zernike values in "zernike_val"
        represent the wavefront RMS amplitude (rather than phase) variation.
        The current wavefront will be multipled by the generated map.
        
    NAME : str
        String containing name of surface that will be printed when executed.
        
    NO_APPLY : bool
        If set, the aberration map will be generated but will not be applied to
        the wavefront. This is useful if you just want to generate a map for
        your own use and modification (e.g. to create an error map for a multi-
        segmented system, each with its own aberration map).
        
    RADIUS : float
        Optional keyword specifying the radius to which the Zernike polynomials
        are normalized. If not specified, the pilot beam radius is used.
    
    CENTERING : str
        String containing the centering of the array. "interpixel" centers the
        array between pixels. Any other value gives pixel centering.
    
    
    Raises
    ------
    ValueError:
        Maximum index for an obscured Zernike polynomial is 22
    
    
    Notes
    -----
    The user specifies 1D arrays containing the Zernike polynomial coefficient
    indicies, the respective coefficients, and if an obstructed circular aperture
    the central obscuration ratio. A wavefront error map will be generated and
    added to the current wavefront.
    
    Zernike index and corresponding aberration for 1st 22 zernikes
    1 : Piston
    2 : X tilt
    3 : Y tilt
    4 : Focus
    5 : 45 degree astigmatism
    6 : 0 degree astigmatism
    7 : Y coma
    8 : X coma
    9 : Y clover (trefoil)
    10 : X clover (trefoil)
    11 : 3rd order spherical
    12 : 5th order 0 degree astig
    13 : 5th order 45 degree astig
    14 : X quadrafoil
    15 : Y quadrafoil
    16 : 5th order X coma
    17 : 5th order Y coma
    18 : 5th order X clover
    19 : 5th order Y clover
    20 : X pentafoil
    21 : Y pentafoil
    22 : 5th order spherical
    
    Update - JEK - Fixed use of ** instead of ** in obscured Zernikes
    Update - AR - Added CENTERING as keyword
    """
    zernike_num = np.asarray(zernike_num)
    zernike_val = np.asarray(zernike_val)
    n = proper.n
    
    if proper.print_it and not ("NO_APPLY" in kwargs and kwargs["NO_APPLY"]):
        if "NAME" in kwargs:
            print("Applying aberrations at %s" % kwargs["NAME"])
        else:
            print("Applying aberrations")
            
    max_z = zernike_num.max()
    
    if eps != 0. and max_z > 22:
        raise ValueError("PROP_ZERNIKES: Maximum index for an obscured Zernike polynomial is 22.")
        
    dmap = np.zeros([n, n], dtype=np.float64)
    
    if "RADIUS" not in kwargs:
        beam_radius = proper.prop_get_beamradius(a)
    else:
        beam_radius = kwargs["RADIUS"]
        
    dx = proper.prop_get_sampling(a) / beam_radius
    x_offset = 0.
    y_offset = 0.
    if("CENTERING" in kwargs):
        if kwargs["CENTERING"] not in _VALID_CENTERING:
            raise ValueError(_CENTERING_ERR)
    
        # Shift by half pixel
        if('interpixel' in kwargs["CENTERING"]):
            x_offset = dx/2.
            y_offset = dx/2.

    x = (np.arange(n, dtype=np.float64) - n//2) * dx + x_offset
    # x_pow_2 = x**2
    
    if (eps == 0.):
        # get list of executable equations defining Zernike polynomials
        zlist, maxrp, maxtc = proper.prop_noll_zernikes(max_z, COMPACT=True,
                                                        EXTRA_VALUES=True)
        
        for j in range(n):
            ab = np.zeros(n, dtype=np.float64)
            y = (j - n//2) * dx + y_offset
            r = np.sqrt(x**2 + y**2)
            t = np.arctan2(y, x)
        
            # predefine r**power, cos(const*theta), sin(const*theta) vectors
            for i in range(2, maxrp+1):
                rps = str(i).strip()
                cmd = "r_pow_" + rps + " = r**i"
                exec(cmd)
            
            for i in range(1, maxtc+1):
                tcs = str(i).strip()
                cmd = "cos" + tcs + "t = np.cos(i*t)"
                exec(cmd)
                cmd = "sin" + tcs + "t = np.sin(i*t)"
                exec(cmd)
           
            # assemble aberrations
            for iz in range(zernike_num.size):
                tmp = eval(zlist[zernike_num[iz]])
                ab += zernike_val[iz] * tmp
            
            dmap[j, :] += ab
            
    else:
        
        for j in range(n):
            y = (j-n//2) * dx + y_offset
            r = np.sqrt(x**2 + y**2)
            r2 = r**2
            r3 = r**3
            r4 = r**4
            r5 = r**5
            t = np.arctan2(y, x)
            
            for iz in range(len(zernike_num)):
                if zernike_num[iz] == 1:
                    ab = 1.
                elif zernike_num[iz] == 2:
                    ab = (2*r*np.cos(t))/np.sqrt(1 + eps**2)
                elif zernike_num[iz] == 3:
                    ab = (2*r*np.sin(t))/np.sqrt(1 + eps**2)
                elif zernike_num[iz] == 4:
                    ab = (np.sqrt(3)*(1 + eps**2 - 2*r2))/(-1 + eps**2)
                elif zernike_num[iz] == 5:
                    ab = (np.sqrt(6)*r2*np.sin(2*t))/np.sqrt(1 + eps**2 + eps**4)
                elif zernike_num[iz] == 6:
                    ab = (np.sqrt(6)*r2*np.cos(2*t))/np.sqrt(1 + eps**2 + eps**4)
                elif zernike_num[iz] == 7:
                    ab = (2*np.sqrt(2)*r*(2 + 2*eps**4 - 3*r2 + eps**2*(2 - 3*r2))*np.sin(t))/((-1 + eps**2)*np.sqrt(1 + 5*eps**2 + 5*eps**4 + eps**6))
                elif zernike_num[iz] == 8:
                    ab = (2*np.sqrt(2)*r*(2 + 2*eps**4 - 3*r2 + eps**2*(2 - 3*r2))*np.cos(t))/((-1 + eps**2)*np.sqrt(1 + 5*eps**2 + 5*eps**4 + eps**6))
                elif zernike_num[iz] == 9:
                    ab = (2*np.sqrt(2)*r3*np.sin(3*t))/np.sqrt(1 + eps**2 + eps**4 + eps**6)
                elif zernike_num[iz] == 10:
                    ab = (2*np.sqrt(2)*r3*np.cos(3*t))/np.sqrt(1 + eps**2 + eps**4 + eps**6)
                elif zernike_num[iz] == 11:
                    ab = (np.sqrt(5)*(1 + eps**4 - 6*r2 + 6*r4 + eps**2*(4 - 6*r2)))/ (-1 + eps**2)**2
                elif zernike_num[iz] == 12:
                    ab = (np.sqrt(10)*r2*(3 + 3*eps**6 - 4*r2 + eps**2*(3 - 4*r2) + eps**4*(3 - 4*r2))*np.cos(2*t))/ ((-1 + eps**2)*np.sqrt((1 + eps**2 + eps**4)*(1 + 4*eps**2 + 10*eps**4 + 4*eps**6 + eps**8)))
                elif zernike_num[iz] == 13:
                    ab = (np.sqrt(10)*r2*(3 + 3*eps**6 - 4*r2 + eps**2*(3 - 4*r2) + eps**4*(3 - 4*r2))*np.sin(2*t))/ ((-1 + eps**2)*np.sqrt((1 + eps**2 + eps**4)*(1 + 4*eps**2 + 10*eps**4 + 4*eps**6 + eps**8)))
                elif zernike_num[iz] == 14:
                    ab = (np.sqrt(10)*r4*np.cos(4*t))/np.sqrt(1 + eps**2 + eps**4 + eps**6 + eps**8)
                elif zernike_num[iz] == 15:
                    ab = (np.sqrt(10)*r4*np.sin(4*t))/np.sqrt(1 + eps**2 + eps**4 + eps**6 + eps**8)
                elif zernike_num[iz] == 16:
                    ab = (2*np.sqrt(3)*r*(3 + 3*eps**8 - 12*r2 + 10*r4 - 12*eps**6*(-1 + r2) + 2*eps**4*(15 - 24*r2 + 5*r4) + 4*eps**2*(3 - 12*r2 + 10*r4))*np.cos(t))/((-1 + eps**2)**2*np.sqrt((1 + 4*eps**2 + eps**4)* (1 + 9*eps**2 + 9*eps**4 + eps**6)))
                elif zernike_num[iz] == 17:
                    ab = (2*np.sqrt(3)*r*(3 + 3*eps**8 - 12*r2 + 10*r4 - 12*eps**6*(-1 + r2) + 2*eps**4*(15 - 24*r2 + 5*r4) + 4*eps**2*(3 - 12*r2 + 10*r4))*np.sin(t))/((-1 + eps**2)**2*np.sqrt((1 + 4*eps**2 + eps**4)* (1 + 9*eps**2 + 9*eps**4 + eps**6)))
                elif zernike_num[iz] == 18:
                    ab = (2*np.sqrt(3)*r3*(4 + 4*eps**8 - 5*r2 + eps**2*(4 - 5*r2) + eps**4*(4 - 5*r2) + eps**6*(4 - 5*r2))*np.cos(3*t))/ ((-1 + eps**2)*np.sqrt((1 + eps**2 + eps**4 + eps**6)*(1 + 4*eps**2 + 10*eps**4 + 20*eps**6 + 10*eps**8 + 4*eps**10 + eps**12)))
                elif zernike_num[iz] == 19:
                    ab = (2*np.sqrt(3)*r3*(4 + 4*eps**8 - 5*r2 + eps**2*(4 - 5*r2) + eps**4*(4 - 5*r2) + eps**6*(4 - 5*r2))*np.sin(3*t))/ ((-1 + eps**2)*np.sqrt((1 + eps**2 + eps**4 + eps**6)*(1 + 4*eps**2 + 10*eps**4 + 20*eps**6 + 10*eps**8 + 4*eps**10 + eps**12)))
                elif zernike_num[iz] == 20:
                    ab = (2*np.sqrt(3)*r5*np.cos(5*t))/ np.sqrt(1 + eps**2 + eps**4 + eps**6 + eps**8 + eps**10)
                elif zernike_num[iz] == 21:
                    ab = (2*np.sqrt(3)*r5*np.sin(5*t))/ np.sqrt(1 + eps**2 + eps**4 + eps**6 + eps**8 + eps**10)
                elif zernike_num[iz] == 22:
                    ab = (np.sqrt(7)*(1 + eps**6 - 12*r2 + 30*r4 - 20*r**6 + eps**4*(9 - 12*r2) + eps**2*(9 - 36*r2 + 30*r4)))/ (-1 + eps**2)**3
                    
            dmap[j, :] += zernike_val[iz] * ab
            
    if not ("NO_APPLY" in kwargs and kwargs["NO_APPLY"]):
        if ("AMPLITUDE" in kwargs and kwargs["AMPLITUDE"]):
            a.wfarr *= proper.prop_shift_center(dmap)
        else:
            i = complex(0, 1)
            a.wfarr *= np.exp(i*2*np.pi/a.lamda*proper.prop_shift_center(dmap))
            
    return dmap
Esempio n. 17
0
def dummy_telescope(lmda, grid_size, kwargs):
    """
    propagates instantaneous complex E-field thru Subaru from the DM through SCExAO

    uses PyPROPER3 to generate the complex E-field at the pupil plane, then propagates it through SCExAO 50x50 DM,
        then coronagraph, to the focal plane
    :returns spectral cube at instantaneous time in the focal_plane()
    """
    # print("Propagating Broadband Wavefront Through Subaru")

    # Initialize the Wavefront in Proper
    wfo = proper.prop_begin(entrance_d, lmda, grid_size, beam_ratio)

    # Defines aperture (baffle-before primary)
    proper.prop_circular_aperture(wfo, entrance_d / 2)
    proper.prop_define_entrance(wfo)  # normalizes abs intensity

    # SCExAO Reimaging 1
    proper.prop_lens(wfo, fl_SxOAPG)
    proper.prop_propagate(wfo, fl_SxOAPG * 2)  # move to second pupil

    ########################################
    # Import/Apply Actual DM Map
    # #######################################
    plot_flag = False
    if kwargs['verbose'] and kwargs['ix'] == 0:
        plot_flag = True
    dm_map = kwargs['map']
    # flat = proper.prop_zernikes(wfo, [2, 3], np.array([5, 1]))  # zernike[2,3] = x,y tilt
    # adding a tilt for shits and giggles
    # proper.prop_propagate(wfo, fl_SxOAPG)  # from tweeter-DM to OAP2
    errormap(wfo,
             dm_map,
             SAMPLING=dm_pitch,
             MIRROR_SURFACE=True,
             MICRONS=True,
             BR=beam_ratio,
             PLOT=plot_flag)  # WAVEFRONT=True
    # errormap(wfo, dm_map, SAMPLING=dm_pitch, AMPLITUDE=True, BR=beam_ratio, PLOT=plot_flag)  # WAVEFRONT=True
    # proper.prop_circular_aperture(wfo, entrance_d/2)

    if kwargs['verbose'] and kwargs['ix'] == 0:
        fig, subplot = plt.subplots(nrows=1, ncols=2, figsize=(12, 5))
        ax1, ax2 = subplot.flatten()
        fig.suptitle('SCExAO Model WFO after errormap',
                     fontweight='bold',
                     fontsize=14)
        # ax.imshow(dm_map, interpolation='none')
        ax1.imshow(np.abs(proper.prop_shift_center(wfo.wfarr))**2,
                   interpolation='none')
        ax1.set_title('Amplitude')
        ax2.imshow(np.angle(proper.prop_shift_center(wfo.wfarr)),
                   interpolation='none',
                   vmin=-2 * np.pi,
                   vmax=2 * np.pi)  # , cmap='hsv'
        ax2.set_title('Phase')
    # ------------------------------------------------
    # proper.prop_propagate(wfo, fl_SxOAPG)  # from tweeter-DM to OAP2

    # SCExAO Reimaging 2
    proper.prop_lens(wfo, fl_SxOAPG)
    proper.prop_propagate(wfo,
                          fl_SxOAPG)  # focus at exit of DM telescope system
    proper.prop_lens(wfo, fl_SxOAPG)
    proper.prop_propagate(wfo,
                          fl_SxOAPG)  # focus at exit of DM telescope system
    # ########################################
    # # Focal Plane
    # # #######################################
    # Check Sampling in focal plane
    # shifts wfo from Fourier Space (origin==lower left corner) to object space (origin==center)
    # proper.prop_shift_center(wfo.wfarr)
    # wf, samp = proper.prop_end(wfo, NoAbs=True)
    wf = proper.prop_shift_center(wfo.wfarr)
    samp = proper.prop_get_sampling(wfo)
    # smp_asec = proper.prop_get_sampling_arcsec(wfo)

    if kwargs['verbose'] and kwargs['ix'] == 0:
        fig, ax = plt.subplots(nrows=1, ncols=1)
        fig.suptitle('SCExAO Model Focal Plane',
                     fontweight='bold',
                     fontsize=14)
        ax.imshow(
            np.abs(wf)**2,
            interpolation='none',
            norm=LogNorm(
                vmin=1e-7,
                vmax=1e-2))  # np.abs(proper.prop_shift_center(wfo.wfarr))**2
    #
    # if kwargs['verbose'] and kwargs['ix']==0:
    #     print(f"\n\tFocal Plane\n"
    #           f"sampling at focal plane is {smp_asec * 1e3:.4f} mas\n"
    #           f"\tfull FOV is {smp_asec * grid_size * 1e3:.2f} mas")
    #     s_rad = proper.prop_get_sampling_radians(wfo)
    #     print(f"sampling at focal plane is {s_rad * 1e6:.6f} urad")

    # print(f"Finished simulation")

    return wf, samp
Esempio n. 18
0
def adaptive_optics(wfo, iwf, iw, f_lens, beam_ratio, iter):
    # print 'Including Adaptive Optics'
    # PSF = proper.prop_shift_center(np.abs(wfo.wfarr)**2)

    # quicklook_im(obj_map, logAmp=False)

    # code to distort measured phase map goes here....
    # print 'add code to distort phase measurment'
    nact = tp.ao_act  #49                       # number of DM actuators along one axis
    nact_across_pupil = nact - 2  #/1.075#nact #47          # number of DM actuators across pupil
    dm_xc = (nact / 2) - 0.5  #-1#0.5#- 0.5
    dm_yc = (nact / 2) - 0.5  #-1#0.5#- 0.5
    d_beam = 2 * proper.prop_get_beamradius(wfo)  # beam diameter
    # dprint((d_beam, d_beam/nact_across_pupil))
    act_spacing = d_beam / (nact_across_pupil)  # actuator spacing
    map_spacing = proper.prop_get_sampling(wfo)  # map sampling

    # have passed through focus, so pupil has rotated 180 deg;
    # need to rotate error map (also need to shift due to the way
    # the rotate() function operates to recenter map)
    # obj_map = np.roll(np.roll(np.rot90(obj_map, 2), 1, 0), 1, 1)
    # obj_map = np.roll(obj_map, 1, -1)
    # quicklook_im(obj_map[45:83,45:83], logAmp=False, show=False)
    # plt.figure()
    # plt.plot(range(44, 84), obj_map[64, 44:84])

    # print map_spacing
    # interpolate map to match number of DM actuators
    # print map_spacing/act_spacing

    # print 'Interpolation boundary uncertainty is likely because of beam ratio causing a non-integer'
    # print '128*0.3 ~ 38 so thats what is being used for now. Needs some T.L.C.'

    # true_width = tp.grid_size*beam_ratio
    # width = int(np.ceil(true_width))
    # # width = int(np.ceil(tp.grid_size*beam_ratio))
    # if width%2 != 0:
    #     width += 1
    # exten = width/true_width
    # print exten
    # mid = int(tp.grid_size/2.)
    # lower = int(mid-width/2.)
    # upper = int(mid+width/2.)
    # print width, mid, lower, upper
    # #
    # # f= interpolate.interp2d(range(width+1), range(width+1), obj_map[lower:upper, lower:upper])
    # # dm_map = f(np.linspace(0,width+1,nact),np.linspace(0,width+1,nact))
    #
    # import skimage.transform
    # dm_map = skimage.transform.resize(obj_map[lower:upper, lower:upper], (nact,nact))
    # print map_spacing, act_spacing, map_spacing/act_spacing

    try:
        with open(iop.CPA_meas, 'rb') as handle:
            CPA_maps, iters = pickle.load(handle)
    except EOFError:
        print 'CPA file not ready?'
        import time
        time.sleep(10)
        with open(iop.CPA_meas, 'rb') as handle:
            CPA_maps, iters = pickle.load(handle)

    # loop_frames(CPA_maps, logAmp=False)
    if iwf[:9] == 'companion':
        CPA_map = CPA_maps[1, iw]
    else:
        CPA_map = CPA_maps[0, iw]

    # loop_frames(CPA_maps, logAmp=False)

    # quicklook_im(CPA_map, logAmp=False)

    # dprint((map_spacing, act_spacing, map_spacing/act_spacing))
    # dm_map = proper.prop_magnify(CPA_map, map_spacing/act_spacing, nact)

    dm_map = CPA_map[tp.grid_size / 2 -
                     (beam_ratio * tp.grid_size / 2):tp.grid_size / 2 +
                     (beam_ratio * tp.grid_size / 2) + 1, tp.grid_size / 2 -
                     (beam_ratio * tp.grid_size / 2):tp.grid_size / 2 +
                     (beam_ratio * tp.grid_size / 2) + 1]
    f = interpolate.interp2d(range(dm_map.shape[0]), range(dm_map.shape[0]),
                             dm_map)
    dm_map = f(np.linspace(0, dm_map.shape[0], nact),
               np.linspace(0, dm_map.shape[0], nact))
    # quicklook_im(dm_map, logAmp=False, show=True)
    dm_map = -dm_map * proper.prop_get_wavelength(wfo) / (4 * np.pi
                                                          )  #<--- here
    # dm_map = -dm_map * proper.prop_get_wavelength(wfo) / (2 * np.pi)
    # dm_map = np.zeros((65,65))
    # quicklook_im(dm_map, logAmp=False, show=True, colormap='jet')
    # if tp.piston_error:
    #     mean_dm_map = np.mean(np.abs(dm_map))
    #     var = mean_dm_map/200.#40.
    #     print var
    #     # var = 0.001#1e-11
    #     if var != 0.0:
    #         dm_map = dm_map + np.random.normal(0, var, (dm_map.shape[0], dm_map.shape[1]))
    # quicklook_im(dm_map, logAmp=False, show=True, colormap='jet')
    # plt.figure()
    # quicklook_wf(wfo)
    # plt.plot(np.linspace(44, 84, nact),dm_map[16])
    # plt.figure()
    # quicklook_im( obj_map[lower:upper, lower:upper], logAmp=False, show=True)
    # act_spacing /= 0.625
    # print act_spacing, proper.prop_get_beamradius(wfo)
    # Need to put on opposite pattern; convert wavefront error to surface height
    # plt.plot(range(44,84), proper.prop_get_phase(wfo)[64, 44:84])
    # proper.prop_add_phase(wfo, waffle)

    # quicklook_im(dm_map)
    if tp.active_null:
        with open(iop.NCPA_meas, 'rb') as handle:
            _, null_map, _ = pickle.load(handle)
        # dprint('null_map')
        # quicklook_im(null_map, logAmp=False)
        # dm_NCPA = -proper.prop_magnify(NCPA_map, map_spacing / act_spacing, nact)
        dm_NCPA = null_map * proper.prop_get_wavelength(wfo) / (4 * np.pi)

        # quicklook_im(dm_map, logAmp=False)
        dm_map += dm_NCPA
        # quicklook_im(dm_map, logAmp=False, show=True, colormap ='jet')
        # dm_map /= 2

    # if tp.speckle_kill:
    #     with open(iop.NCPA_meas, 'rb') as handle:
    #         Imaps, NCPA_map,_ = pickle.load(handle)
    # quicklook_im(NCPA_map, logAmp=False)
    # loop_frames(Imaps+1e-9, logAmp=True)
    # with open(iop.NCPA_meas, 'rb') as handle:
    #     _, NCPA_map,_ = pickle.load(handle)
    # quicklook_im(NCPA_map, logAmp=False)
    #
    # dm_NCPA = -proper.prop_magnify(NCPA_map, map_spacing / act_spacing, nact)
    # dm_NCPA = dm_NCPA*proper.prop_get_wavelength(wfo)/(4*np.pi)
    #
    # # quicklook_im(dm_map, logAmp=False)
    # dm_map = dm_NCPA

    if tp.active_modulate and iter >= 8:
        # import dm_functions as DM
        # # speck.generate_flatmap(phase)
        # s_amp = DM.amplitudemodel(0.05, 30, c=1.6)
        # tp.null_ao_act = tp.ao_act
        # xloc, yloc = 4, 0
        # # rotate_angle = iter%30 * 360/30
        # # rotate_angle = np.pi * rotate_angle / 180.
        # # rot_matrix = [[np.cos(rotate_angle), -np.sin(rotate_angle)], [np.sin(rotate_angle), np.cos(rotate_angle)]]
        # # xloc, yloc = np.matmul(rot_matrix, [xloc, yloc])
        #
        # phase = iter % 10 * 2 * np.pi / 10.
        # s_amp = iter % 5 * s_amp/ 5.
        # print xloc, yloc, phase
        # waffle = DM.make_speckle_kxy(xloc, yloc, s_amp, phase) / 1e6
        # waffle += DM.make_speckle_kxy(yloc, xloc, s_amp, -phase) / 1e6
        # waffle += DM.make_speckle_kxy(0.71 * xloc, 0.71 * xloc, s_amp, -phase) / 1e6
        # waffle += DM.make_speckle_kxy(0.71 * xloc, -0.71 * xloc, s_amp, -phase) / 1e6
        # waffle /= 4
        # # quicklook_im(waffle, logAmp=False)
        # # print dm_map.shape
        # # print waffle.shape
        #
        # dmap =proper.prop_dm(wfo, waffle, dm_xc, dm_yc, N_ACT_ACROSS_PUPIL=nact, FIT = True)
        # dm_map = -dm_map * proper.prop_get_wavelength(wfo) / (4 * np.pi * 5) * (iter % 10 - 5)
        print 1 / 5. * (iter % 10 - 5)
        dm_map = dm_map / 5. * (iter % 10 - 5)
        # dmap = proper.prop_dm(wfo, pattern, dm_xc, dm_yc,
        #                       N_ACT_ACROSS_PUPIL=nact, FIT=True)
    # quicklook_wf(wfo)

    # quicklook_wf(wfo)
    # dmap =proper.prop_dm(wfo, dm_map, dm_xc, dm_yc, N_ACT_ACROSS_PUPIL=nact, FIT = True) #<-- here

    dmap = proper.prop_dm(wfo, dm_map, dm_xc, dm_yc, act_spacing,
                          FIT=True)  #<-- here

    # quicklook_im(dmap, logAmp=False, show=True)
    # quicklook_im(CPA_map*proper.prop_get_wavelength(wfo)/(4*np.pi), logAmp=False)
    # quicklook_im(CPA_map*proper.prop_get_wavelength(wfo)/(4*np.pi) + dmap, logAmp=False, show=True)

    # # # There's a boundary effect that needs to be mitigated
    # phase_map = proper.prop_get_phase(wfo)
    # artefacts = np.abs(phase_map) > 1
    # # print np.shape(artefacts), np.shape(phase_map)
    # # quicklook_im(phase_map, logAmp=False)
    #
    # width = round(tp.grid_size*beam_ratio)
    # mid = int(tp.grid_size/2.)
    # lower = int(mid-width/2.)
    # upper = int(mid+width/2.)
    # mask = np.zeros((tp.grid_size, tp.grid_size))
    # mask[upper,:] = 1
    # mask[:, upper] = 1
    # mask[lower,:] = 1
    # mask[:,lower] = 1
    # mask = mask*artefacts
    #
    # # print width, upper
    #
    # # wfo.wfarr[upper] = phase_map[tp.grid_size/2,tp.grid_size/2]
    # # quicklook_im( phase_map*mask, logAmp=False)
    #
    # proper.prop_add_phase(wfo,-phase_map*mask*proper.prop_get_wavelength(wfo)/(2*np.pi))
    # quicklook_IQ(wfo)

    # I = np.real(wfo.wfarr)
    # Q = np.imag(wfo.wfarr)
    # I = proper.prop_shift_center(I)
    # Q = proper.prop_shift_center(Q)
    # Q[89] = 0
    # Q[:,89] = 0
    # # Q[39] = 0
    # # Q[:,39] = 0
    # I = proper.prop_shift_center(I)
    # Q = proper.prop_shift_center(Q)
    # wfo.wfarr = I+1j*Q
    # quicklook_wf(wfo)

    # quicklook_IQ(wfo)
    # print phase_map[artefacts]
    # plt.imshow(phase_map)
    # # plt.figure()
    # # plt.imshow(dmap)
    # #
    # plt.show()
    # #
    # proper.prop_propagate(wfo, f_lens, "coronagraph lens")
    # quicklook_wf(wfo)
    return
Esempio n. 19
0
def coronagraph(wfo, f_lens, occulter_type, occult_loc, diam):
    # proper.prop_lens(wfo, f_lens, "coronagraph imaging lens")
    # proper.prop_propagate(wfo, f_lens, "occulter")
    # quicklook_wf(wfo)
    # occulter sizes are specified here in units of lambda/diameter;
    # convert lambda/diam to radians then to meters

    lamda = proper.prop_get_wavelength(wfo)
    # print lamda
    occrad = 3  # occulter radius in lam/D
    occrad_rad = occrad * lamda / diam  # occulter radius in radians
    dx_m = proper.prop_get_sampling(wfo)
    dx_rad = proper.prop_get_sampling_radians(wfo)
    occrad_m = occrad_rad * dx_m / dx_rad  # occulter radius in meters
    # print occrad_m, occulter_type
    # print 'line 22.', occulter_type
    #plt.figure(figsize=(12,8))
    # quicklook_wf(wfo)
    if occulter_type == "Gaussian":
        r = proper.prop_radius(wfo)
        h = np.sqrt(-0.5 * occrad_m**2 / np.log(1 - np.sqrt(0.5)))  #*0.8
        gauss_spot = 1 - np.exp(-0.5 * (r / h)**2)
        # print occult_loc
        # gauss_spot = np.roll(gauss_spot,occult_loc,(0,1))
        gauss_spot = shift(gauss_spot, shift=occult_loc, mode='wrap')
        proper.prop_multiply(wfo, gauss_spot)
        # quicklook_wf(wfo)
        #plt.suptitle("Gaussian spot", fontsize = 18)
    elif occulter_type == "Solid":
        proper.prop_circular_obscuration(wfo, occrad_m * 4. / 3)
        #plt.suptitle("Solid spot", fontsize = 18)
        # quicklook_wf(wfo)
    elif occulter_type == "8th_Order":
        proper.prop_8th_order_mask(wfo, occrad * 3. / 4., CIRCULAR=True)
        # quicklook_wf(wfo)
    elif occulter_type == 'Vortex':
        # print('lol')
        # apodization(wfo, True)
        vortex(wfo)
        # lyotstop(wfo, True)

        #plt.suptitle("8th order band limited spot", fontsize = 18)
    # quicklook_wf(wfo, logAmp=False, show=True)
    # After occulter
    # plt.subplot(1,2,1)
    # plt.imshow(np.sqrt(proper.prop_get_amplitude(wfo)), origin = "lower", cmap = plt.cm.gray)
    # plt.text(200, 10, "After Occulter", color = "w")
    # plt.show()
    # quicklook_wf(wfo)

    proper.prop_propagate(wfo, f_lens, "pupil reimaging lens")
    # quicklook_wf(wfo)
    proper.prop_lens(wfo, f_lens, "pupil reimaging lens")
    # quicklook_wf(wfo)
    proper.prop_propagate(wfo, 2 * f_lens, "lyot stop")
    # quicklook_wf(wfo)

    # from numpy.fft import fft2, ifft2
    # wfo.wfarr = fft2(wfo.wfarr) #/ np.size(wfo.wfarr)
    # quicklook_wf(wfo)

    # plt.subplot(1,2,2)
    # plt.imshow(proper.prop_get_amplitude(wfo)**0.2, origin = "lower", cmap = plt.cm.gray)
    # plt.text(200, 10, "Before Lyot Stop", color = "w")
    # plt.show()
    # quicklook_wf(wfo,logAmp=False, show=True)

    if occulter_type == "Gaussian":
        # quicklook_wf(wfo)
        proper.prop_circular_aperture(wfo, 0.75, NORM=True)
    elif occulter_type == "Solid":
        # quicklook_wf(wfo)
        proper.prop_circular_aperture(wfo, 0.84, NORM=True)
    elif occulter_type == "8th_Order":
        # quicklook_wf(wfo)
        proper.prop_circular_aperture(wfo, 0.75, NORM=True)  #0.5
    elif occulter_type == "Vortex":
        # proper.prop_circular_aperture(wfo, 0.98, NORM = True) #0.5
        lyotstop(wfo, True)
        # quicklook_wf(wfo)
    elif occulter_type == "None (Lyot Stop)":
        proper.prop_circular_aperture(wfo, 0.8, NORM=True)

    proper.prop_propagate(wfo, f_lens, "reimaging lens")
    # errs = np.sqrt(proper.prop_get_amplitude(wfo))
    # # plt.figure()
    # # plt.imshow(errs)
    # # plt.show()
    # quicklook_wf(wfo)
    proper.prop_lens(wfo, f_lens, "reimaging lens")
    # quicklook_wf(wfo)
    proper.prop_propagate(wfo, f_lens, "final focus")
    # from numpy.fft import fft2, ifft2
    # wfo.wfarr = fft2(wfo.wfarr) / np.size(wfo.wfarr)
    # quicklook_wf(wfo)
    return