class ProjectProvenance: def __init__(self, database_helper, full_provenance=False): """ Initializes the provenance for the mjclawar_rarshad project Parameters ---------- database_helper: DatabaseHelper full_provenance: bool Returns ------- """ assert isinstance(database_helper, DatabaseHelper) self.database_helper = database_helper if full_provenance: self.prov_doc = ProvDocument.deserialize(dir_info.plan_json) else: self.prov_doc = ProvDocument() self.prov_doc.add_namespace(mcras.BDP_NAMESPACE.name, mcras.BDP_NAMESPACE.link) self.prov_doc.add_namespace(mcras.ALG_NAMESPACE.name, mcras.ALG_NAMESPACE.link) self.prov_doc.add_namespace(mcras.DAT_NAMESPACE.name, mcras.DAT_NAMESPACE.link) self.prov_doc.add_namespace(mcras.LOG_NAMESPACE.name, mcras.LOG_NAMESPACE.link) self.prov_doc.add_namespace(mcras.ONT_NAMESPACE.name, mcras.ONT_NAMESPACE.link) def write_provenance_json(self): self.prov_doc.serialize(dir_info.plan_json)
def save_provenance(prov_doc: ProvDocument, filepath: Path): logging.debug("Saving provenance files:") logging.debug(" - %s", filepath) with filepath.open("w") as f: prov_doc.serialize(f) provn_content = prov_doc.get_provn() filepath = filepath.with_suffix(".provn") logging.debug(" - %s", filepath) with filepath.open("w") as f: f.write(provn_content)
def create_document(): # Create a new provenance document document = ProvDocument() # d1 is now an empty provenance document # Before asserting provenance statements, we need to have a way to refer to the "things" # we want to describe provenance (e.g. articles, data sets, people). For that purpose, # PROV uses qualified names to identify things, which essentially a shortened representation # of a URI in the form of prefix:localpart. Valid qualified names require their prefixes defined, # which we is going to do next. # Declaring namespaces for various prefixes used in the example document.add_namespace('now', 'http://www.provbook.org/nownews/') document.add_namespace('nowpeople', 'http://www.provbook.org/nownews/people/') document.add_namespace('bk', 'http://www.provbook.org/ns/#') # Entity: now:employment-article-v1.html e1 = document.entity('now:employment-article-v1.html') e1.add_attributes({'prov:value': 'Conteudo do HTML'}) document.agent('nowpeople:Filipe') # Attributing the article to the agent document.wasAttributedTo( e1, 'nowpeople:Filipe_' + str(random.randint(1000, 1070000000))) # add more namespace declarations document.add_namespace('govftp', 'ftp://ftp.bls.gov/pub/special.requests/oes/') document.add_namespace('void', 'http://vocab.deri.ie/void#') # 'now:employment-article-v1.html' was derived from at dataset at govftp document.entity('govftp:oesm11st.zip', { 'prov:label': 'employment-stats-2011', 'prov:type': 'void:Dataset' }) document.wasDerivedFrom('now:employment-article-v1.html', 'govftp:oesm11st.zip') # Adding an activity document.add_namespace('is', 'http://www.provbook.org/nownews/is/#') document.activity('is:writeArticle') # Usage and Generation document.used('is:writeArticle', 'govftp:oesm11st.zip') document.wasGeneratedBy('now:employment-article-v1.html', 'is:writeArticle') #print("Document prepared.") # What we have so far (in PROV-N) logging.debug(document.serialize(indent=2)) # d1.serialize('article-prov.json') # write to file return document
class TrackedFile(object): """File with provenance tracking.""" def __init__(self, filename, attributes, ancestors=None): """Create an instance of a file with provenance tracking.""" self._filename = filename self.attributes = copy.deepcopy(attributes) self.provenance = None self.entity = None self.activity = None self._ancestors = [] if ancestors is None else ancestors def __str__(self): """Return summary string.""" return "{}: {}".format(self.__class__.__name__, self.filename) def copy_provenance(self, target=None): """Create a copy with identical provenance information.""" if self.provenance is None: raise ValueError("Provenance of {} not initialized".format(self)) if target is None: new = TrackedFile(self.filename, self.attributes) else: if target.filename != self.filename: raise ValueError( "Attempt to copy provenance to incompatible file.") new = target new.attributes = copy.deepcopy(self.attributes) new.provenance = copy.deepcopy(self.provenance) new.entity = new.provenance.get_record(self.entity.identifier)[0] new.activity = new.provenance.get_record(self.activity.identifier)[0] return new @property def filename(self): """Filename.""" return self._filename def initialize_provenance(self, activity): """Initialize the provenance document. Note: this also copies the ancestor provenance. Therefore, changes made to ancestor provenance after calling this function will not propagate into the provenance of this file. """ if self.provenance is not None: raise ValueError( "Provenance of {} already initialized".format(self)) self.provenance = ProvDocument() self._initialize_namespaces() self._initialize_activity(activity) self._initialize_entity() self._initialize_ancestors(activity) def _initialize_namespaces(self): """Inialize the namespaces.""" for namespace in ('file', 'attribute', 'preprocessor', 'task'): create_namespace(self.provenance, namespace) def _initialize_activity(self, activity): """Copy the preprocessor task activity.""" self.activity = activity update_without_duplicating(self.provenance, activity.bundle) def _initialize_entity(self): """Initialize the entity representing the file.""" attributes = { 'attribute:' + k: str(v) for k, v in self.attributes.items() if k not in ('authors', 'projects') } self.entity = self.provenance.entity('file:' + self.filename, attributes) attribute_to_authors(self.entity, self.attributes.get('authors', [])) attribute_to_projects(self.entity, self.attributes.get('projects', [])) def _initialize_ancestors(self, activity): """Register ancestor files for provenance tracking.""" for ancestor in self._ancestors: if ancestor.provenance is None: ancestor.initialize_provenance(activity) update_without_duplicating(self.provenance, ancestor.provenance) self.wasderivedfrom(ancestor) def wasderivedfrom(self, other): """Let the file know that it was derived from other.""" if isinstance(other, TrackedFile): other_entity = other.entity else: other_entity = other update_without_duplicating(self.provenance, other_entity.bundle) if not self.activity: raise ValueError("Activity not initialized.") self.entity.wasDerivedFrom(other_entity, self.activity) def _select_for_include(self): attributes = { 'provenance': self.provenance.serialize(format='xml'), 'software': "Created with ESMValTool v{}".format(__version__), } if 'caption' in self.attributes: attributes['caption'] = self.attributes['caption'] return attributes @staticmethod def _include_provenance_nc(filename, attributes): with Dataset(filename, 'a') as dataset: for key, value in attributes.items(): setattr(dataset, key, value) @staticmethod def _include_provenance_png(filename, attributes): pnginfo = PngInfo() exif_tags = { 'provenance': 'ImageHistory', 'caption': 'ImageDescription', 'software': 'Software', } for key, value in attributes.items(): pnginfo.add_text(exif_tags.get(key, key), value, zip=True) with Image.open(filename) as image: image.save(filename, pnginfo=pnginfo) def _include_provenance(self): """Include provenance information as metadata.""" attributes = self._select_for_include() # List of files to attach provenance to files = [self.filename] if 'plot_file' in self.attributes: files.append(self.attributes['plot_file']) # Attach provenance to supported file types for filename in files: ext = os.path.splitext(filename)[1].lstrip('.').lower() write = getattr(self, '_include_provenance_' + ext, None) if write: write(filename, attributes) def save_provenance(self): """Export provenance information.""" self._include_provenance() filename = os.path.splitext(self.filename)[0] + '_provenance' self.provenance.serialize(filename + '.xml', format='xml') # Only plot provenance if there are not too many records. if len(self.provenance.records) > 100: logger.debug("Not plotting large provenance tree of %s", self.filename) else: figure = prov_to_dot(self.provenance) figure.write_svg(filename + '.svg')
class Provenance(object): def __init__(self, output_dir): self.output_dir = output_dir self.doc = None self.workflow = None def start(self, workflow=False): from daops import __version__ as daops_version from housemartin import __version__ as housemartin_version self.doc = ProvDocument() # Declaring namespaces for various prefixes self.doc.set_default_namespace(uri="http://purl.org/roocs/prov#") self.doc.add_namespace("prov", uri="http://www.w3.org/ns/prov#") self.doc.add_namespace( "provone", uri="http://purl.dataone.org/provone/2015/01/15/ontology#" ) self.doc.add_namespace("dcterms", uri="http://purl.org/dc/terms/") # Define entities project_cds = self.doc.agent( ":copernicus_CDS", { "prov:type": "prov:Organization", "dcterms:title": "Copernicus Climate Data Store", }, ) self.sw_housemartin = self.doc.agent( ":housemartin", { "prov:type": "prov:SoftwareAgent", "dcterms:source": f"https://github.com/cedadev/housemartin/releases/tag/v{housemartin_version}", }, ) self.doc.wasAttributedTo(self.sw_housemartin, project_cds) self.sw_daops = self.doc.agent( ":daops", { "prov:type": "prov:SoftwareAgent", "dcterms:source": f"https://github.com/roocs/daops/releases/tag/v{daops_version}", }, ) # workflow if workflow is True: self.workflow = self.doc.entity( ":workflow", {"prov:type": "provone:Workflow"} ) orchestrate = self.doc.activity( ":orchestrate", other_attributes={ "prov:startedAtTime": "2020-11-26T09:15:00", "prov:endedAtTime": "2020-11-26T09:30:00", }, ) self.doc.wasAssociatedWith( orchestrate, agent=self.sw_housemartin, plan=self.workflow ) def add_operator(self, operator, parameters, collection, output): op = self.doc.activity( f":{operator}", other_attributes={ ":time": parameters.get("time"), ":apply_fixes": parameters.get("apply_fixes"), }, ) # input data ds_in = os.path.basename(collection[0]) # ds_in_attrs = { # 'prov:type': 'provone:Data', # 'prov:value': f'{ds_in}', # } op_in = self.doc.entity(f":{ds_in}") # operator started by daops if self.workflow: self.doc.wasAssociatedWith(op, agent=self.sw_daops, plan=self.workflow) else: self.doc.start(op, starter=self.sw_daops, trigger=self.sw_housemartin) # Generated output file ds_out = os.path.basename(output[0]) # ds_out_attrs = { # 'prov:type': 'provone:Data', # 'prov:value': f'{ds_out}', # } op_out = self.doc.entity(f":{ds_out}") self.doc.wasDerivedFrom(op_out, op_in, activity=op) def write_json(self): outfile = os.path.join(self.output_dir, "provenance.json") self.doc.serialize(outfile, format="json") return outfile def write_png(self): outfile = os.path.join(self.output_dir, "provenance.png") figure = prov_to_dot(self.doc) figure.write_png(outfile) return outfile
class NIDMExporter(): """ Generic class to parse a result directory to extract the pieces of information to be stored in NIDM-Results and to generate a NIDM-Results export. """ def __init__(self, version, out_dir, zipped=True): out_dirname = os.path.basename(out_dir) out_path = os.path.dirname(out_dir) # Create output path from output name self.zipped = zipped if not self.zipped: out_dirname = out_dirname + ".nidm" else: out_dirname = out_dirname + ".nidm.zip" out_dir = os.path.join(out_path, out_dirname) # Quit if output path already exists and user doesn't want to overwrite # it if os.path.exists(out_dir): msg = out_dir + " already exists, overwrite?" if not input("%s (y/N) " % msg).lower() == 'y': quit("Bye.") if os.path.isdir(out_dir): shutil.rmtree(out_dir) else: os.remove(out_dir) self.out_dir = out_dir if version == "dev": self.version = { 'major': 10000, 'minor': 0, 'revision': 0, 'num': version } else: major, minor, revision = version.split(".") if "-rc" in revision: revision, rc = revision.split("-rc") else: rc = -1 self.version = { 'major': int(major), 'minor': int(minor), 'revision': int(revision), 'rc': int(rc), 'num': version } # Initialise prov document self.doc = ProvDocument() self._add_namespaces() # A temp directory that will contain the exported data self.export_dir = tempfile.mkdtemp(prefix="nidm-", dir=out_path) self.prepend_path = '' def parse(self): """ Parse a result directory to extract the pieces information to be stored in NIDM-Results. """ try: # Methods: find_software, find_model_fitting, find_contrasts and # find_inferences should be defined in the children classes and # return a list of NIDM Objects as specified in the objects module # Object of type Software describing the neuroimaging software # package used for the analysis self.software = self._find_software() # List of objects of type ModelFitting describing the # model fitting step in NIDM-Results (main activity: Model # Parameters Estimation) self.model_fittings = self._find_model_fitting() # Dictionary of (key, value) pairs where where key is a tuple # containing the identifier of a ModelParametersEstimation object # and a tuple of identifiers of ParameterEstimateMap objects and # value is an object of type Contrast describing the contrast # estimation step in NIDM-Results (main activity: Contrast # Estimation) self.contrasts = self._find_contrasts() # Inference activity and entities # Dictionary of (key, value) pairs where key is the identifier of a # ContrastEstimation object and value is an object of type # Inference describing the inference step in NIDM-Results (main # activity: Inference) self.inferences = self._find_inferences() except Exception: self.cleanup() raise def cleanup(self): if os.path.isdir(self.export_dir): shutil.rmtree(self.export_dir) def add_object(self, nidm_object, export_file=True): """ Add a NIDMObject to a NIDM-Results export. """ if not export_file: export_dir = None else: export_dir = self.export_dir if not isinstance(nidm_object, NIDMFile): nidm_object.export(self.version, export_dir) else: nidm_object.export(self.version, export_dir, self.prepend_path) # ProvDocument: add object to the bundle if nidm_object.prov_type == PROV['Activity']: self.bundle.activity(nidm_object.id, other_attributes=nidm_object.attributes) elif nidm_object.prov_type == PROV['Entity']: self.bundle.entity(nidm_object.id, other_attributes=nidm_object.attributes) elif nidm_object.prov_type == PROV['Agent']: self.bundle.agent(nidm_object.id, other_attributes=nidm_object.attributes) # self.bundle.update(nidm_object.p) def export(self): """ Generate a NIDM-Results export. """ try: if not os.path.isdir(self.export_dir): os.mkdir(self.export_dir) # Initialise main bundle self._create_bundle(self.version) self.add_object(self.software) # Add model fitting steps if not isinstance(self.model_fittings, list): self.model_fittings = list(self.model_fittings.values()) for model_fitting in self.model_fittings: # Design Matrix # model_fitting.activity.used(model_fitting.design_matrix) self.bundle.used(model_fitting.activity.id, model_fitting.design_matrix.id) self.add_object(model_fitting.design_matrix) # *** Export visualisation of the design matrix self.add_object(model_fitting.design_matrix.image) if model_fitting.design_matrix.image.file is not None: self.add_object(model_fitting.design_matrix.image.file) if model_fitting.design_matrix.hrf_models is not None: # drift model self.add_object(model_fitting.design_matrix.drift_model) if self.version['major'] > 1 or \ (self.version['major'] == 1 and self.version['minor'] >= 3): # Machine # model_fitting.data.wasAttributedTo(model_fitting.machine) self.bundle.wasAttributedTo(model_fitting.data.id, model_fitting.machine.id) self.add_object(model_fitting.machine) # Imaged subject or group(s) for sub in model_fitting.subjects: self.add_object(sub) # model_fitting.data.wasAttributedTo(sub) self.bundle.wasAttributedTo(model_fitting.data.id, sub.id) # Data # model_fitting.activity.used(model_fitting.data) self.bundle.used(model_fitting.activity.id, model_fitting.data.id) self.add_object(model_fitting.data) # Error Model # model_fitting.activity.used(model_fitting.error_model) self.bundle.used(model_fitting.activity.id, model_fitting.error_model.id) self.add_object(model_fitting.error_model) # Parameter Estimate Maps for param_estimate in model_fitting.param_estimates: # param_estimate.wasGeneratedBy(model_fitting.activity) self.bundle.wasGeneratedBy(param_estimate.id, model_fitting.activity.id) self.add_object(param_estimate) self.add_object(param_estimate.coord_space) self.add_object(param_estimate.file) if param_estimate.derfrom is not None: self.bundle.wasDerivedFrom(param_estimate.id, param_estimate.derfrom.id) self.add_object(param_estimate.derfrom) self.add_object(param_estimate.derfrom.file, export_file=False) # Residual Mean Squares Map # model_fitting.rms_map.wasGeneratedBy(model_fitting.activity) self.add_object(model_fitting.rms_map) self.bundle.wasGeneratedBy(model_fitting.rms_map.id, model_fitting.activity.id) self.add_object(model_fitting.rms_map.coord_space) self.add_object(model_fitting.rms_map.file) if model_fitting.rms_map.derfrom is not None: self.bundle.wasDerivedFrom( model_fitting.rms_map.id, model_fitting.rms_map.derfrom.id) self.add_object(model_fitting.rms_map.derfrom) self.add_object(model_fitting.rms_map.derfrom.file, export_file=False) # Resels per Voxel Map if model_fitting.rpv_map is not None: self.add_object(model_fitting.rpv_map) self.bundle.wasGeneratedBy(model_fitting.rpv_map.id, model_fitting.activity.id) self.add_object(model_fitting.rpv_map.coord_space) self.add_object(model_fitting.rpv_map.file) if model_fitting.rpv_map.inf_id is not None: self.bundle.used(model_fitting.rpv_map.inf_id, model_fitting.rpv_map.id) if model_fitting.rpv_map.derfrom is not None: self.bundle.wasDerivedFrom( model_fitting.rpv_map.id, model_fitting.rpv_map.derfrom.id) self.add_object(model_fitting.rpv_map.derfrom) self.add_object(model_fitting.rpv_map.derfrom.file, export_file=False) # Mask # model_fitting.mask_map.wasGeneratedBy(model_fitting.activity) self.bundle.wasGeneratedBy(model_fitting.mask_map.id, model_fitting.activity.id) self.add_object(model_fitting.mask_map) if model_fitting.mask_map.derfrom is not None: self.bundle.wasDerivedFrom( model_fitting.mask_map.id, model_fitting.mask_map.derfrom.id) self.add_object(model_fitting.mask_map.derfrom) self.add_object(model_fitting.mask_map.derfrom.file, export_file=False) # Create coordinate space export self.add_object(model_fitting.mask_map.coord_space) # Create "Mask map" entity self.add_object(model_fitting.mask_map.file) # Grand Mean map # model_fitting.grand_mean_map.wasGeneratedBy(model_fitting.activity) self.bundle.wasGeneratedBy(model_fitting.grand_mean_map.id, model_fitting.activity.id) self.add_object(model_fitting.grand_mean_map) # Coordinate space entity self.add_object(model_fitting.grand_mean_map.coord_space) # Grand Mean Map entity self.add_object(model_fitting.grand_mean_map.file) # Model Parameters Estimation activity self.add_object(model_fitting.activity) self.bundle.wasAssociatedWith(model_fitting.activity.id, self.software.id) # model_fitting.activity.wasAssociatedWith(self.software) # self.add_object(model_fitting) # Add contrast estimation steps analysis_masks = dict() for (model_fitting_id, pe_ids), contrasts in list(self.contrasts.items()): for contrast in contrasts: model_fitting = self._get_model_fitting(model_fitting_id) # for contrast in contrasts: # contrast.estimation.used(model_fitting.rms_map) self.bundle.used(contrast.estimation.id, model_fitting.rms_map.id) # contrast.estimation.used(model_fitting.mask_map) self.bundle.used(contrast.estimation.id, model_fitting.mask_map.id) analysis_masks[contrast.estimation.id] = \ model_fitting.mask_map.id self.bundle.used(contrast.estimation.id, contrast.weights.id) self.bundle.used(contrast.estimation.id, model_fitting.design_matrix.id) # contrast.estimation.wasAssociatedWith(self.software) self.bundle.wasAssociatedWith(contrast.estimation.id, self.software.id) for pe_id in pe_ids: # contrast.estimation.used(pe_id) self.bundle.used(contrast.estimation.id, pe_id) # Create estimation activity self.add_object(contrast.estimation) # Create contrast weights self.add_object(contrast.weights) if contrast.contrast_map is not None: # Create contrast Map # contrast.contrast_map.wasGeneratedBy(contrast.estimation) self.bundle.wasGeneratedBy(contrast.contrast_map.id, contrast.estimation.id) self.add_object(contrast.contrast_map) self.add_object(contrast.contrast_map.coord_space) # Copy contrast map in export directory self.add_object(contrast.contrast_map.file) if contrast.contrast_map.derfrom is not None: self.bundle.wasDerivedFrom( contrast.contrast_map.id, contrast.contrast_map.derfrom.id) self.add_object(contrast.contrast_map.derfrom) self.add_object(contrast.contrast_map.derfrom.file, export_file=False) # Create Std Err. Map (T-tests) or Explained Mean Sq. Map # (F-tests) # contrast.stderr_or_expl_mean_sq_map.wasGeneratedBy # (contrast.estimation) stderr_explmeansq_map = ( contrast.stderr_or_expl_mean_sq_map) self.bundle.wasGeneratedBy(stderr_explmeansq_map.id, contrast.estimation.id) self.add_object(stderr_explmeansq_map) self.add_object(stderr_explmeansq_map.coord_space) if isinstance(stderr_explmeansq_map, ContrastStdErrMap) and \ stderr_explmeansq_map.contrast_var: self.add_object(stderr_explmeansq_map.contrast_var) if stderr_explmeansq_map.var_coord_space: self.add_object( stderr_explmeansq_map.var_coord_space) if stderr_explmeansq_map.contrast_var.coord_space: self.add_object( stderr_explmeansq_map.contrast_var.coord_space) self.add_object( stderr_explmeansq_map.contrast_var.file, export_file=False) self.bundle.wasDerivedFrom( stderr_explmeansq_map.id, stderr_explmeansq_map.contrast_var.id) self.add_object(stderr_explmeansq_map.file) # Create Statistic Map # contrast.stat_map.wasGeneratedBy(contrast.estimation) self.bundle.wasGeneratedBy(contrast.stat_map.id, contrast.estimation.id) self.add_object(contrast.stat_map) self.add_object(contrast.stat_map.coord_space) # Copy Statistical map in export directory self.add_object(contrast.stat_map.file) if contrast.stat_map.derfrom is not None: self.bundle.wasDerivedFrom( contrast.stat_map.id, contrast.stat_map.derfrom.id) self.add_object(contrast.stat_map.derfrom) self.add_object(contrast.stat_map.derfrom.file, export_file=False) # Create Z Statistic Map if contrast.z_stat_map: # contrast.z_stat_map.wasGeneratedBy(contrast.estimation) self.bundle.wasGeneratedBy(contrast.z_stat_map.id, contrast.estimation.id) self.add_object(contrast.z_stat_map) self.add_object(contrast.z_stat_map.coord_space) # Copy Statistical map in export directory self.add_object(contrast.z_stat_map.file) # self.add_object(contrast) # Add inference steps for contrast_id, inferences in list(self.inferences.items()): contrast = self._get_contrast(contrast_id) for inference in inferences: if contrast.z_stat_map: used_id = contrast.z_stat_map.id else: used_id = contrast.stat_map.id # inference.inference_act.used(used_id) self.bundle.used(inference.inference_act.id, used_id) # inference.inference_act.wasAssociatedWith(self.software) self.bundle.wasAssociatedWith(inference.inference_act.id, self.software.id) # self.add_object(inference) # Excursion set # inference.excursion_set.wasGeneratedBy(inference.inference_act) self.bundle.wasGeneratedBy(inference.excursion_set.id, inference.inference_act.id) self.add_object(inference.excursion_set) self.add_object(inference.excursion_set.coord_space) if inference.excursion_set.visu is not None: self.add_object(inference.excursion_set.visu) if inference.excursion_set.visu.file is not None: self.add_object(inference.excursion_set.visu.file) # Copy "Excursion set map" file in export directory self.add_object(inference.excursion_set.file) if inference.excursion_set.clust_map is not None: self.add_object(inference.excursion_set.clust_map) self.add_object(inference.excursion_set.clust_map.file) self.add_object( inference.excursion_set.clust_map.coord_space) if inference.excursion_set.mip is not None: self.add_object(inference.excursion_set.mip) self.add_object(inference.excursion_set.mip.file) # Height threshold if inference.height_thresh.equiv_thresh is not None: for equiv in inference.height_thresh.equiv_thresh: self.add_object(equiv) self.add_object(inference.height_thresh) # Extent threshold if inference.extent_thresh.equiv_thresh is not None: for equiv in inference.extent_thresh.equiv_thresh: self.add_object(equiv) self.add_object(inference.extent_thresh) # Display Mask (potentially more than 1) if inference.disp_mask: for mask in inference.disp_mask: # inference.inference_act.used(mask) self.bundle.used(inference.inference_act.id, mask.id) self.add_object(mask) # Create coordinate space entity self.add_object(mask.coord_space) # Create "Display Mask Map" entity self.add_object(mask.file) if mask.derfrom is not None: self.bundle.wasDerivedFrom( mask.id, mask.derfrom.id) self.add_object(mask.derfrom) self.add_object(mask.derfrom.file, export_file=False) # Search Space self.bundle.wasGeneratedBy(inference.search_space.id, inference.inference_act.id) # inference.search_space.wasGeneratedBy(inference.inference_act) self.add_object(inference.search_space) self.add_object(inference.search_space.coord_space) # Copy "Mask map" in export directory self.add_object(inference.search_space.file) # Peak Definition if inference.peak_criteria: # inference.inference_act.used(inference.peak_criteria) self.bundle.used(inference.inference_act.id, inference.peak_criteria.id) self.add_object(inference.peak_criteria) # Cluster Definition if inference.cluster_criteria: # inference.inference_act.used(inference.cluster_criteria) self.bundle.used(inference.inference_act.id, inference.cluster_criteria.id) self.add_object(inference.cluster_criteria) if inference.clusters: # Clusters and peaks for cluster in inference.clusters: # cluster.wasDerivedFrom(inference.excursion_set) self.bundle.wasDerivedFrom( cluster.id, inference.excursion_set.id) self.add_object(cluster) for peak in cluster.peaks: self.bundle.wasDerivedFrom(peak.id, cluster.id) self.add_object(peak) self.add_object(peak.coordinate) if cluster.cog is not None: self.bundle.wasDerivedFrom( cluster.cog.id, cluster.id) self.add_object(cluster.cog) self.add_object(cluster.cog.coordinate) # Inference activity # inference.inference_act.wasAssociatedWith(inference.software_id) # inference.inference_act.used(inference.height_thresh) self.bundle.used(inference.inference_act.id, inference.height_thresh.id) # inference.inference_act.used(inference.extent_thresh) self.bundle.used(inference.inference_act.id, inference.extent_thresh.id) self.bundle.used(inference.inference_act.id, analysis_masks[contrast.estimation.id]) self.add_object(inference.inference_act) # Write-out prov file self.save_prov_to_files() return self.out_dir except Exception: self.cleanup() raise def _get_model_fitting(self, mf_id): """ Retreive model fitting with identifier 'mf_id' from the list of model fitting objects stored in self.model_fitting """ for model_fitting in self.model_fittings: if model_fitting.activity.id == mf_id: return model_fitting raise Exception("Model fitting activity with id: " + str(mf_id) + " not found.") def _get_contrast(self, con_id): """ Retreive contrast with identifier 'con_id' from the list of contrast objects stored in self.contrasts """ for contrasts in list(self.contrasts.values()): for contrast in contrasts: if contrast.estimation.id == con_id: return contrast raise Exception("Contrast activity with id: " + str(con_id) + " not found.") def _add_namespaces(self): """ Add namespaces to NIDM document. """ self.doc.add_namespace(NIDM) self.doc.add_namespace(NIIRI) self.doc.add_namespace(CRYPTO) self.doc.add_namespace(DCT) self.doc.add_namespace(DC) self.doc.add_namespace(NFO) self.doc.add_namespace(OBO) self.doc.add_namespace(SCR) self.doc.add_namespace(NIF) def _create_bundle(self, version): """ Initialise NIDM-Results bundle. """ # *** Bundle entity if not hasattr(self, 'bundle_ent'): self.bundle_ent = NIDMResultsBundle(nidm_version=version['num']) self.bundle = ProvBundle(identifier=self.bundle_ent.id) self.bundle_ent.export(self.version, self.export_dir) # # provn export # self.bundle = ProvBundle(identifier=bundle_id) self.doc.entity(self.bundle_ent.id, other_attributes=self.bundle_ent.attributes) # *** NIDM-Results Export Activity if version['num'] not in ["1.0.0", "1.1.0"]: if not hasattr(self, 'export_act'): self.export_act = NIDMResultsExport() self.export_act.export(self.version, self.export_dir) # self.doc.update(self.export_act.p) self.doc.activity(self.export_act.id, other_attributes=self.export_act.attributes) # *** bundle was Generated by NIDM-Results Export Activity if not hasattr(self, 'export_time'): self.export_time = str(datetime.datetime.now().time()) if version['num'] in ["1.0.0", "1.1.0"]: self.doc.wasGeneratedBy(entity=self.bundle_ent.id, time=self.export_time) else: # provn self.doc.wasGeneratedBy(entity=self.bundle_ent.id, activity=self.export_act.id, time=self.export_time) # *** NIDM-Results Exporter (Software Agent) if version['num'] not in ["1.0.0", "1.1.0"]: if not hasattr(self, 'exporter'): self.exporter = self._get_exporter() self.exporter.export(self.version, self.export_dir) # self.doc.update(self.exporter.p) self.doc.agent(self.exporter.id, other_attributes=self.exporter.attributes) self.doc.wasAssociatedWith(self.export_act.id, self.exporter.id) def _get_model_parameters_estimations(self, error_model): """ Infer model estimation method from the 'error_model'. Return an object of type ModelParametersEstimation. """ if error_model.dependance == NIDM_INDEPEDENT_ERROR: if error_model.variance_homo: estimation_method = STATO_OLS else: estimation_method = STATO_WLS else: estimation_method = STATO_GLS mpe = ModelParametersEstimation(estimation_method, self.software.id) return mpe def use_prefixes(self, ttl): prefix_file = os.path.join(os.path.dirname(__file__), 'prefixes.csv') context = dict() with open(prefix_file, encoding="ascii") as csvfile: reader = csv.reader(csvfile) next(reader, None) # skip the headers for alphanum_id, prefix, uri in reader: if alphanum_id in ttl: context[prefix] = uri ttl = "@prefix " + prefix + ": <" + uri + "> .\n" + ttl ttl = ttl.replace(alphanum_id, prefix + ":") if uri in ttl: ttl = ttl.replace(alphanum_id, prefix + ":") elif uri in ttl: context[prefix] = uri ttl = "@prefix " + prefix + ": <" + uri + "> .\n" + ttl ttl = ttl.replace(alphanum_id, prefix + ":") return (ttl, context) def save_prov_to_files(self, showattributes=False): """ Write-out provn serialisation to nidm.provn. """ self.doc.add_bundle(self.bundle) # provn_file = os.path.join(self.export_dir, 'nidm.provn') # provn_fid = open(provn_file, 'w') # # FIXME None # # provn_fid.write(self.doc.get_provn(4).replace("None", "-")) # provn_fid.close() ttl_file = os.path.join(self.export_dir, 'nidm.ttl') ttl_txt = self.doc.serialize(format='rdf', rdf_format='turtle') ttl_txt, json_context = self.use_prefixes(ttl_txt) # Add namespaces to json-ld context for namespace in self.doc._namespaces.get_registered_namespaces(): json_context[namespace._prefix] = namespace._uri for namespace in \ list(self.doc._namespaces._default_namespaces.values()): json_context[namespace._prefix] = namespace._uri json_context["xsd"] = "http://www.w3.org/2000/01/rdf-schema#" # Work-around to issue with INF value in rdflib (reported in # https://github.com/RDFLib/rdflib/pull/655) ttl_txt = ttl_txt.replace(' inf ', ' "INF"^^xsd:float ') with open(ttl_file, 'w') as ttl_fid: ttl_fid.write(ttl_txt) # print(json_context) jsonld_file = os.path.join(self.export_dir, 'nidm.json') jsonld_txt = self.doc.serialize(format='rdf', rdf_format='json-ld', context=json_context) with open(jsonld_file, 'w') as jsonld_fid: jsonld_fid.write(jsonld_txt) # provjsonld_file = os.path.join(self.export_dir, 'nidm.provjsonld') # provjsonld_txt = self.doc.serialize(format='jsonld') # with open(provjsonld_file, 'w') as provjsonld_fid: # provjsonld_fid.write(provjsonld_txt) # provn_file = os.path.join(self.export_dir, 'nidm.provn') # provn_txt = self.doc.serialize(format='provn') # with open(provn_file, 'w') as provn_fid: # provn_fid.write(provn_txt) # Post-processing if not self.zipped: # Just rename temp directory to output_path os.rename(self.export_dir, self.out_dir) else: # Create a zip file that contains the content of the temp directory os.chdir(self.export_dir) zf = zipfile.ZipFile(os.path.join("..", self.out_dir), mode='w') try: for root, dirnames, filenames in os.walk("."): for filename in filenames: zf.write(os.path.join(filename)) shutil.rmtree(os.path.join("..", self.export_dir)) finally: zf.close() os.chdir("..")
def get_provenance_history(uuid, normalized_provenance_dict): prov_doc = ProvDocument() # The 'prov' prefix is build-in namespace, no need to redefine here prov_doc.add_namespace(HUBMAP_NAMESPACE, 'https://hubmapconsortium.org/') # A bit validation if 'relationships' not in normalized_provenance_dict: raise LookupError( f'Missing "relationships" key from the normalized_provenance_dict for Entity of uuid: {uuid}' ) if 'nodes' not in normalized_provenance_dict: raise LookupError( f'Missing "nodes" key from the normalized_provenance_dict for Entity of uuid: {uuid}' ) # Pack the nodes into a dictionary using the uuid as key nodes_dict = {} for node in normalized_provenance_dict['nodes']: nodes_dict[node['uuid']] = node # Loop through the relationships and build the provenance document for rel_dict in normalized_provenance_dict['relationships']: # (Activity) - [ACTIVITY_OUTPUT] -> (Entity) if rel_dict['rel_data']['type'] == 'ACTIVITY_OUTPUT': activity_uuid = rel_dict['fromNode']['uuid'] entity_uuid = rel_dict['toNode']['uuid'] # (Entity) - [ACTIVITY_INPUT] -> (Activity) elif rel_dict['rel_data']['type'] == 'ACTIVITY_INPUT': entity_uuid = rel_dict['fromNode']['uuid'] activity_uuid = rel_dict['toNode']['uuid'] activity_node = nodes_dict[activity_uuid] entity_node = nodes_dict[entity_uuid] activity_uri = None entity_uri = None # Skip Lab nodes for agent and organization if entity_node['entity_type'] != 'Lab': # Get the agent information from the entity node agent_record = get_agent_record(entity_node) # Use 'created_by_user_sub' as agent ID if presents # Otherwise, fall back to use email by replacing @ and . created_by_user_sub_prov_key = f'{HUBMAP_NAMESPACE}:userUUID' created_by_user_email_prov_key = f'{HUBMAP_NAMESPACE}:userEmail' if created_by_user_sub_prov_key in agent_record: agent_id = agent_record[created_by_user_sub_prov_key] elif created_by_user_email_prov_key in agent_record: agent_id = str( agent_record[created_by_user_email_prov_key]).replace( '@', '-') agent_id = str(agent_id).replace('.', '-') else: msg = f"Both 'created_by_user_sub' and 'created_by_user_email' are missing form entity of uuid: {entity_node['uuid']}" logger.error(msg) raise LookupError(msg) # Build the agent uri agent_uri = build_uri(HUBMAP_NAMESPACE, 'agent', agent_id) # Only add the same agent once # Multiple entities can be associated to the same agent agent = prov_doc.get_record(agent_uri) if len(agent) == 0: doc_agent = prov_doc.agent(agent_uri, agent_record) else: doc_agent = agent[0] # Organization # Get the organization information from the entity node org_record = get_organization_record(entity_node) # Build the organization uri group_uuid_prov_key = f'{HUBMAP_NAMESPACE}:groupUUID' org_uri = build_uri(HUBMAP_NAMESPACE, 'organization', org_record[group_uuid_prov_key]) # Only add the same organization once # Multiple entities can be associated to different agents who are from the same organization org = prov_doc.get_record(org_uri) if len(org) == 0: doc_org = prov_doc.agent(org_uri, org_record) else: doc_org = org[0] # Build the activity uri activity_uri = build_uri(HUBMAP_NAMESPACE, 'activities', activity_node['uuid']) # Register activity if not already registered activity = prov_doc.get_record(activity_uri) if len(activity) == 0: # Shared attributes to be added to the PROV document activity_attributes = {'prov:type': 'Activity'} # Convert the timestampt integer to datetime string # Note: in our case, prov:startTime is the same as prov:endTime activity_time = timestamp_to_datetime( activity_node['created_timestamp']) # Add prefix to all other attributes for key in activity_node: prov_key = f'{HUBMAP_NAMESPACE}:{key}' # Use datetime string instead of timestamp integer if key == 'created_timestamp': activity_attributes[prov_key] = activity_time else: activity_attributes[prov_key] = activity_node[key] # Register activity doc_activity = prov_doc.activity(activity_uri, activity_time, activity_time, activity_attributes) # Relationship: the agent actedOnBehalfOf the org prov_doc.actedOnBehalfOf(doc_agent, doc_org, doc_activity) else: doc_activity = activity[0] # Build the entity uri entity_uri = build_uri(HUBMAP_NAMESPACE, 'entities', entity_node['uuid']) # Register entity is not already registered if len(prov_doc.get_record(entity_uri)) == 0: # Shared attributes to be added to the PROV document entity_attributes = {'prov:type': 'Entity'} # Add prefix to all other attributes for key in entity_node: # Entity property values can be list or dict, skip # And list and dict are unhashable types when calling `prov_doc.entity()` if not isinstance(entity_node[key], (list, dict)): prov_key = f'{HUBMAP_NAMESPACE}:{key}' # Use datetime string instead of timestamp integer if key in [ 'created_timestamp', 'last_modified_timestamp', 'published_timestamp' ]: entity_attributes[prov_key] = activity_time else: entity_attributes[prov_key] = entity_node[key] # Register entity prov_doc.entity(entity_uri, entity_attributes) # Build activity uri and entity uri if not already built # For the Lab nodes if activity_uri is None: activity_uri = build_uri(HUBMAP_NAMESPACE, 'activities', activity_node['uuid']) if entity_uri is None: entity_uri = build_uri(HUBMAP_NAMESPACE, 'entities', entity_node['uuid']) # The following relationships apply to all node including Lab entity nodes # (Activity) - [ACTIVITY_OUTPUT] -> (Entity) if rel_dict['rel_data']['type'] == 'ACTIVITY_OUTPUT': # Relationship: the entity wasGeneratedBy the activity prov_doc.wasGeneratedBy(entity_uri, activity_uri) # (Entity) - [ACTIVITY_INPUT] -> (Activity) elif rel_dict['rel_data']['type'] == 'ACTIVITY_INPUT': # Relationship: the activity used the entity prov_doc.used(activity_uri, entity_uri) # Format into json string based on the PROV-JSON Serialization # https://www.w3.org/Submission/prov-json/ serialized_json = prov_doc.serialize() return serialized_json
def example(): g = ProvDocument() # Local namespace # Doesnt exist yet so we are creating it ap = Namespace('aip', 'https://araport.org/provenance/') # Dublin Core g.add_namespace("dcterms", "http://purl.org/dc/terms/") # FOAF g.add_namespace("foaf", "http://xmlns.com/foaf/0.1/") # Add sponsors and contributors as Agents # ap['matthew_vaughn'] # aip:matthew_vaughn # https://araport.org/provenance/:matthew_vaughn # Learn this from a call to profiles service? Adds a dependency on Agave so I am open to figuring out another way me = g.agent( ap['matthew_vaughn'], { 'prov:type': PROV["Person"], 'foaf:givenName': "Matthew Vaughn", 'foaf:mbox': "<mailto:[email protected]>" }) # Hard coded for now walter = g.agent( ap['walter_moreira'], { 'prov:type': PROV["Person"], 'foaf:givenName': "Walter Moreira", 'foaf:mbox': "<mailto:[email protected]>" }) utexas = g.agent( ap['university_of_texas'], { 'prov:type': PROV["Organization"], 'foaf:givenName': "University of Texas at Austin" }) # Set delegation to our host University # We may have trouble doing this for other users since we don't always capture their host instituion g.actedOnBehalfOf(walter, utexas) g.actedOnBehalfOf(me, utexas) # Include the ADAMA platform as an Agent and set attribution # dcterms:title and dcterms:description are hardcoded # dcterms:language is hard-coded # dcterms:source is the URI of the public git source repository for ADAMA # "dcterms:updated": "2015-04-17T09:44:56" - this would actually be the date ADAMA was updated adama_platform = g.agent( ap['adama_platform'], { 'dcterms:title': "ADAMA", 'dcterms:description': "Araport Data and Microservices API", 'dcterms:language': "en-US", 'dcterms:identifier': "https://api.araport.org/community/v0.3/", 'dcterms:updated': "2015-04-17T09:44:56" }) g.wasGeneratedBy(adama_platform, walter) # Include the ADAMA microservice as an Agent and set attribution+delegation # dcterms:title and dcterms:description are inherited from the service's metadata # dcterms:language is hard-coded # dcterms:identifier is the deployment URI for the service # dcterms:source is the URI of the public git source repository. The URL in this example is just a dummy # # The name for each microservice should be unique. We've decided to # use the combination of namespace, service name, and version microservice_name = 'mwvaughn/bar_annotation_v1.0.0' adama_microservice = g.agent( ap[microservice_name], { 'dcterms:title': "BAR Annotation Service", 'dcterms:description': "Returns annotation from locus ID", 'dcterms:language': "en-US", 'dcterms:identifier': "https://api.araport.org/community/v0.3/mwvaughn/bar_annotation_v1.0.0", 'dcterms:source': "https://github.com/Arabidopsis-Information-Portal/prov-enabled-api-sample" }) # the microservice was generated by me on date X (don't use now, use when the service was updated) g.wasGeneratedBy(adama_microservice, me, datetime.datetime.now()) # The microservice used the platform now g.used(adama_microservice, adama_platform, datetime.datetime.now()) # Sources # # Define BAR # Agents nick = g.agent( ap['nicholas_provart'], { 'prov:type': PROV["Person"], 'foaf:givenName': "Nicholas Provart", 'foaf:mbox': "*****@*****.**" }) utoronto = g.agent( ap['university_of_toronto'], { 'prov:type': PROV["Organization"], 'foaf:givenName': "University of Toronto", 'dcterms:identifier': "http://www.utoronto.ca/" }) g.actedOnBehalfOf(nick, utoronto) # Entity # All fields derived from Sources.yml # dcterms:title and dcterms:description come straight from the YAML # dcterms:identifier - URI pointing to the source's canonical URI representation # optional - dcterms:language: Recommended best practice is to use a controlled vocabulary such as RFC 4646 # optional - dcterms:updated: date the source was published or last updated # optional - dcterms:license: Simple string or URI to license. Validate URI if provided? datasource1 = g.entity( ap['datasource1'], { 'dcterms:title': "BAR Arabidopsis AGI -> Annotation", 'dcterms:description': "Most recent annotation for given AGI", 'dcterms:language': "en-US", 'dcterms:identifier': "http://bar.utoronto.ca/webservices/agiToAnnot.php", 'dcterms:updated': "2015-04-17T09:44:56", 'dcterms:license': "Creative Commons 3.0" }) # Set up attribution to Nick g.wasAttributedTo(datasource1, nick) # Define TAIR # Agents # dcterms:language: Recommended best practice is to use a controlled vocabulary such as RFC 4646 eva = g.agent(ap['eva_huala'], { 'prov:type': PROV["Person"], 'foaf:givenName': "Eva Huala" }) phoenix = g.agent( ap['phoenix_bioinformatics'], { 'prov:type': PROV["Organization"], 'foaf:givenName': "Phoenix Bioinformatics" }) g.actedOnBehalfOf(eva, phoenix) # Entity # All fields derived from Sources.yml # optional - dcterms:citation: Plain text bibliographic citation. If only provided as doi, should we try to validate it? datasource2 = g.entity( ap['datasource2'], { 'dcterms:title': "TAIR", 'dcterms:description': "The Arabidopsis Information Resource", 'dcterms:language': "en-US", 'dcterms:identifier': "https://www.arabidopsis.org/", 'dcterms:citation': "The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Research 2011 doi: 10.1093/nar/gkr1090" }) g.wasAttributedTo(datasource2, eva) # In Sources.yml, these two sources are nested. Define that relationship here # There are other types of relationships but we will just use derived from for simplicity in this prototype g.wasDerivedFrom(ap['datasource1'], ap['datasource2']) # Depending on which ADAMA microservice type we are using, define an activity # Eventually, break these into more atomic actions in a chain action1 = g.activity(ap['do_query'], datetime.datetime.now()) # action1 = g.activity(ap['do_map'], datetime.datetime.now()) # action1 = g.activity(ap['do_generic'], datetime.datetime.now()) # action1 = g.activity(ap['do_passthrough'], datetime.datetime.now()) # Future... Support for ADAMA-native microservices # action1 = g.activity(ap['generate'], datetime.datetime.now()) # Define current ADAMA response as an Entity # This is what's being returned to the user and is thus the subject of the PROV record # May be able to add more attributes to it but this is the minimum response = g.entity(ap['adama_response']) # Response is generated by the process_query action # Time-stamp it! g.wasGeneratedBy(response, ap['do_query'], datetime.datetime.now()) # The process_query used the microservice g.used(ap['do_query'], adama_microservice, datetime.datetime.now()) # The microservice used datasource1 g.used(adama_microservice, datasource1, datetime.datetime.now()) # Print prov_n print(g.get_provn()) # Print prov-json print(g.serialize()) # Write out as a pretty picture graph = prov.dot.prov_to_dot(g) graph.write_png('Sources.png')
def write_targets_prov(self, tlist, C, bundle_id): #Initialisation # cs = b.agent('CrowdScanner') if self.document_id == -1: d = ProvDocument() d.add_namespace(AO) d.set_default_namespace(self.defaultns % self.game_id) if uploadprov: provstore_document = self.api.document.create(d, name="Operation%s CrowdScanner" % self.game_id, public=True) document_uri = provstore_document.url logging.info("prov doc URI: " + str(document_uri)) self.provfilelist.append(provstore_document.id) self.savelocalrecord() self.document_id = provstore_document.id b = ProvDocument() # Create a new document for this update b.add_namespace(AO) b.set_default_namespace(self.defaultns % self.game_id) # cs to be used with all targets cs = b.agent('agent/CrowdScanner', (('prov:type', AO['IBCCAlgo']), ('prov:type', PROV['SoftwareAgent']))) timestamp = time.time() # Record the timestamp at each update to generate unique identifiers startTime = datetime.datetime.fromtimestamp(timestamp) endTime = startTime activity = b.activity('activity/cs/update_report_%s' % timestamp, startTime, endTime) activity.wasAssociatedWith(cs) #Add target and report entities for i, tdata in enumerate(tlist): if self.changedtargets[i]==0: continue #Target entity for target i tid = int(tdata[0]) x = tdata[1] y = tdata[2] # targettype = tdata[3] #don't record here, it will be revealed and recorded by UAVs v = int(tdata[4]) agentids = tdata[7] targetattributes = {'ao:longitude': x, 'ao:latitude': y, } #'ao:asset_type':str(targettype)} target_v0 = b.entity('cs/target/'+str(tid)+'.'+str(v), targetattributes) #Post the root report if this is the first version if v==0: self.targets[tid] = b.entity('cs/target/'+str(tid)) else: try: target_v0.wasDerivedFrom(self.targetversions[tid]) except KeyError: logging.error("Got a key error for key " + str(tid) + ', which is supposed to be version' + str(v)) self.targetversions[tid] = target_v0 target_v0.specializationOf(self.targets[tid]) target_v0.wasAttributedTo(cs) #Report entities for origins of target i for j, r in enumerate(self.target_rep_ids[i]): if r not in self.postedreports: Crow = C[r,:] x = Crow[1] y = Crow[2] reptext = tdata[5][j].decode('utf8') # Try to replace unusual characters reptext = reptext.encode('ascii', 'replace') agentid = agentids[j] reporter_name = 'agent/crowdreporter%s' % agentid b.agent(reporter_name, (('prov:type', AO['CrowdReporter']), ('prov:type', PROV['Person']))) reportattributes = {'ao:longitude': x, 'ao:latitude': y, 'ao:report': reptext} self.postedreports[r] = b.entity('cs/report/'+str(r), reportattributes) self.postedreports[r].wasAttributedTo(reporter_name) activity.used(self.postedreports[r]) target_v0.wasDerivedFrom(self.postedreports[r]) if uploadprov: #Invalidate old targets no longer in use for i,tid in enumerate(self.targets_to_invalidate): target_v = self.targetversions[tid] b.wasInvalidatedBy(target_v, activity) #Post the document to the server #bundle = b.bundle('crowd_scanner') bundle_id = 'bundle/csupdate/%s' % timestamp self.api.add_bundle(self.document_id, b.serialize(), bundle_id)
def get_blank_prov_document(): return ProvDocument(namespaces=all_namespaces) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( description= "Process and generate provenance for a MIMIC patient admission") parser.add_argument("admission_id", type=int, help="The ID of admission to process") args = parser.parse_args() prov_doc1 = ProvDocument(namespaces=all_namespaces) admission = Admission(prov_doc1, args.admission_id) admission.process() filepath = output_path / f"{args.admission_id}.json" with filepath.open("w") as f: prov_doc1.serialize(f) provn_content = prov_doc1.get_provn() print(provn_content) with filepath.with_suffix(".provn").open("w") as f: f.write(provn_content) dot = prov_to_dot(prov_doc1) dot.write_pdf(filepath.with_suffix(".pdf")) db.close_session()
def example(): g = ProvDocument() # Local namespace # Doesnt exist yet so we are creating it ap = Namespace('aip', 'https://araport.org/provenance/') # Dublin Core g.add_namespace("dcterms", "http://purl.org/dc/terms/") # FOAF g.add_namespace("foaf", "http://xmlns.com/foaf/0.1/") # Add sponsors and contributors as Agents # ap['matthew_vaughn'] # aip:matthew_vaughn # https://araport.org/provenance/:matthew_vaughn # Learn this from a call to profiles service? Adds a dependency on Agave so I am open to figuring out another way me = g.agent(ap['matthew_vaughn'], { 'prov:type': PROV["Person"], 'foaf:givenName': "Matthew Vaughn", 'foaf:mbox': "<mailto:[email protected]>" }) # Hard coded for now walter = g.agent(ap['walter_moreira'], { 'prov:type': PROV["Person"], 'foaf:givenName': "Walter Moreira", 'foaf:mbox': "<mailto:[email protected]>" }) utexas = g.agent(ap['university_of_texas'], { 'prov:type': PROV["Organization"], 'foaf:givenName': "University of Texas at Austin" }) # Set delegation to our host University # We may have trouble doing this for other users since we don't always capture their host instituion g.actedOnBehalfOf(walter, utexas) g.actedOnBehalfOf(me, utexas) # Include the ADAMA platform as an Agent and set attribution # dcterms:title and dcterms:description are hardcoded # dcterms:language is hard-coded # dcterms:source is the URI of the public git source repository for ADAMA # "dcterms:updated": "2015-04-17T09:44:56" - this would actually be the date ADAMA was updated adama_platform = g.agent(ap['adama_platform'], {'dcterms:title': "ADAMA", 'dcterms:description': "Araport Data and Microservices API", 'dcterms:language':"en-US", 'dcterms:identifier':"https://api.araport.org/community/v0.3/", 'dcterms:updated': "2015-04-17T09:44:56" }) g.wasGeneratedBy(adama_platform, walter) # Include the ADAMA microservice as an Agent and set attribution+delegation # dcterms:title and dcterms:description are inherited from the service's metadata # dcterms:language is hard-coded # dcterms:identifier is the deployment URI for the service # dcterms:source is the URI of the public git source repository. The URL in this example is just a dummy # # The name for each microservice should be unique. We've decided to # use the combination of namespace, service name, and version microservice_name = 'mwvaughn/bar_annotation_v1.0.0' adama_microservice = g.agent(ap[microservice_name], {'dcterms:title': "BAR Annotation Service", 'dcterms:description': "Returns annotation from locus ID", 'dcterms:language':"en-US", 'dcterms:identifier':"https://api.araport.org/community/v0.3/mwvaughn/bar_annotation_v1.0.0", 'dcterms:source':"https://github.com/Arabidopsis-Information-Portal/prov-enabled-api-sample" }) # the microservice was generated by me on date X (don't use now, use when the service was updated) g.wasGeneratedBy(adama_microservice, me, datetime.datetime.now()) # The microservice used the platform now g.used(adama_microservice, adama_platform, datetime.datetime.now()) # Sources # # Define BAR # Agents nick = g.agent(ap['nicholas_provart'], { 'prov:type': PROV["Person"], 'foaf:givenName': "Nicholas Provart", 'foaf:mbox': "*****@*****.**" }) utoronto = g.agent(ap['university_of_toronto'], { 'prov:type': PROV["Organization"], 'foaf:givenName': "University of Toronto", 'dcterms:identifier':"http://www.utoronto.ca/" }) g.actedOnBehalfOf(nick, utoronto) # Entity # All fields derived from Sources.yml # dcterms:title and dcterms:description come straight from the YAML # dcterms:identifier - URI pointing to the source's canonical URI representation # optional - dcterms:language: Recommended best practice is to use a controlled vocabulary such as RFC 4646 # optional - dcterms:updated: date the source was published or last updated # optional - dcterms:license: Simple string or URI to license. Validate URI if provided? datasource1 = g.entity(ap['datasource1'], {'dcterms:title': "BAR Arabidopsis AGI -> Annotation", 'dcterms:description': "Most recent annotation for given AGI", 'dcterms:language':"en-US", 'dcterms:identifier':"http://bar.utoronto.ca/webservices/agiToAnnot.php", 'dcterms:updated':"2015-04-17T09:44:56", 'dcterms:license':"Creative Commons 3.0" }) # Set up attribution to Nick g.wasAttributedTo(datasource1, nick) # Define TAIR # Agents # dcterms:language: Recommended best practice is to use a controlled vocabulary such as RFC 4646 eva = g.agent(ap['eva_huala'], { 'prov:type': PROV["Person"], 'foaf:givenName': "Eva Huala" }) phoenix = g.agent(ap['phoenix_bioinformatics'], { 'prov:type': PROV["Organization"], 'foaf:givenName': "Phoenix Bioinformatics" }) g.actedOnBehalfOf(eva, phoenix) # Entity # All fields derived from Sources.yml # optional - dcterms:citation: Plain text bibliographic citation. If only provided as doi, should we try to validate it? datasource2 = g.entity(ap['datasource2'], {'dcterms:title': "TAIR", 'dcterms:description': "The Arabidopsis Information Resource", 'dcterms:language':"en-US", 'dcterms:identifier':"https://www.arabidopsis.org/", 'dcterms:citation':"The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Research 2011 doi: 10.1093/nar/gkr1090"}) g.wasAttributedTo(datasource2, eva) # In Sources.yml, these two sources are nested. Define that relationship here # There are other types of relationships but we will just use derived from for simplicity in this prototype g.wasDerivedFrom(ap['datasource1'], ap['datasource2']) # Depending on which ADAMA microservice type we are using, define an activity # Eventually, break these into more atomic actions in a chain action1 = g.activity(ap['do_query'], datetime.datetime.now()) # action1 = g.activity(ap['do_map'], datetime.datetime.now()) # action1 = g.activity(ap['do_generic'], datetime.datetime.now()) # action1 = g.activity(ap['do_passthrough'], datetime.datetime.now()) # Future... Support for ADAMA-native microservices # action1 = g.activity(ap['generate'], datetime.datetime.now()) # Define current ADAMA response as an Entity # This is what's being returned to the user and is thus the subject of the PROV record # May be able to add more attributes to it but this is the minimum response = g.entity(ap['adama_response']) # Response is generated by the process_query action # Time-stamp it! g.wasGeneratedBy(response, ap['do_query'], datetime.datetime.now()) # The process_query used the microservice g.used(ap['do_query'], adama_microservice, datetime.datetime.now()) # The microservice used datasource1 g.used(adama_microservice, datasource1, datetime.datetime.now()) # Print prov_n print(g.get_provn()) # Print prov-json print(g.serialize()) # Write out as a pretty picture graph = prov.dot.prov_to_dot(g) graph.write_png('Sources.png')
def get_provenance_history(self, driver, uuid, depth=None): prov_doc = ProvDocument() #prov_doc. #NOTE!! There is a bug with the JSON serializer. I can't add the prov prefix using this mechanism prov_doc.add_namespace('ex', 'http://example.org/') prov_doc.add_namespace('hubmap', 'https://hubmapconsortium.org/') #prov_doc.add_namespace('dct', 'http://purl.org/dc/terms/') #prov_doc.add_namespace('foaf','http://xmlns.com/foaf/0.1/') relation_list = [] with driver.session() as session: try: # max_level_str is the string used to put a limit on the number of levels to traverse max_level_str = '' if depth is not None and len(str(depth)) > 0: max_level_str = """maxLevel: {depth},""".format( depth=depth) """ Basically this Cypher query returns a collection of nodes and relationships. The relationships include ACTIVITY_INPUT, ACTIVITY_OUTPUT and HAS_METADATA. First, we build a dictionary of the nodes using uuid as a key. Next, we loop through the relationships looking for HAS_METADATA relationships. The HAS_METADATA relationships connect the Entity nodes with their metadata. The data from the Metadata node becomes the 'metadata' attribute for the Entity node. """ """Possible replacement: THIS WORKS...NEEDS LOTS of COMMENTS!! MATCH (entity_metadata)<-[r1:HAS_METADATA]-(e)<-[r2:ACTIVITY_OUTPUT]-(a:Activity)-[r3:HAS_METADATA]->(activity_metadata) WHERE e.hubmap_identifier = 'TEST0010-LK-1-1' WITH [e,a, entity_metadata, activity_metadata] AS entities, COLLECT(r1) + COLLECT(r2) + COLLECT(r3) AS relationships WITH [node in entities | node {.*, label:labels(node)}] AS nodes, [rel in relationships | rel { .*, fromNode: { label:labels(startNode(rel))[0], uuid:startNode(rel).uuid } , toNode: { label:labels(endNode(rel))[0], uuid:endNode(rel).uuid }, rel_data: { type: type(rel) } } ] as rels RETURN nodes, rels UNION OPTIONAL MATCH (activity_metadata)<-[r1:HAS_METADATA]-(a:Activity)<-[r2:ACTIVITY_INPUT|:ACTIVITY_OUTPUT*]-(parent)-[r3:HAS_METADATA]->(parent_metadata), (e)<-[r4:ACTIVITY_OUTPUT]-(a:Activity) WHERE e.hubmap_identifier = 'TEST0010-LK-1-1' WITH [parent,parent_metadata, a, activity_metadata] AS nodes, [rel in COLLECT(r1) + COLLECT(r3) + COLLECT(r4)+COLLECT(apoc.convert.toRelationship(r2)) | rel { .*, fromNode: { label:labels(startNode(rel))[0], uuid:startNode(rel).uuid } , toNode: { label:labels(endNode(rel))[0], uuid:endNode(rel).uuid }, rel_data: { type: type(rel) } } ] as rels RETURN DISTINCT nodes, rels uuid for TEST0010-LK-1-1 for testing: eda3916db4695d834eb6c51a893d06f1 """ stmt = """MATCH (n:Entity {{ uuid: '{uuid}' }}) CALL apoc.path.subgraphAll(n, {{ {max_level_str} relationshipFilter:'<ACTIVITY_INPUT|<ACTIVITY_OUTPUT|HAS_METADATA>' }}) YIELD nodes, relationships WITH [node in nodes | node {{ .*, label:labels(node)[0] }} ] as nodes, [rel in relationships | rel {{ .*, fromNode: {{ label:labels(startNode(rel))[0], uuid:startNode(rel).uuid }} , toNode: {{ label:labels(endNode(rel))[0], uuid:endNode(rel).uuid }}, rel_data: {{ type: type(rel) }} }} ] as rels WITH {{ nodes:nodes, relationships:rels }} as json RETURN json""".format(uuid=uuid, max_level_str=max_level_str) result = session.run(stmt) #there should only be one record for jsonData in result: try: record = dict(jsonData)['json'] if 'relationships' not in record: raise LookupError( 'Error, unable to find relationships for uuid:' + uuid) if 'nodes' not in record: raise LookupError( 'Error, unable to find nodes for uuid:' + uuid) node_dict = {} # pack the nodes into a dictionary using the uuid as a key for node_record in record['nodes']: node_dict[node_record['uuid']] = node_record # TODO: clean up nodes # remove nodes that lack metadata # need to devise a methodology for this # try preprocessing the record['relationships'] here: # make a copy of the node_dict called unreferenced_node_dict # loop through the relationships and find all the has_metadata relationships # for each node pair in the has_metadata relationship, delete it from the unreferenced_node_dict # once the loop is finished, continue as before # add some logic when generating the wasGenerated and used relationships. If either node is in the # unreferenced_node_dict, then ignore the relationship # now, connect the nodes for rel_record in record['relationships']: from_uuid = rel_record['fromNode']['uuid'] to_uuid = rel_record['toNode']['uuid'] from_node = node_dict[from_uuid] to_node = node_dict[to_uuid] if rel_record['rel_data'][ 'type'] == HubmapConst.HAS_METADATA_REL: # assign the metadata node as the metadata attribute # just extract the provenance information from the metadata node entity_timestamp_json = Provenance.get_json_timestamp( int(to_node[ HubmapConst. PROVENANCE_CREATE_TIMESTAMP_ATTRIBUTE]) ) provenance_data = { ProvConst.PROV_GENERATED_TIME_ATTRIBUTE: entity_timestamp_json } type_code = None isEntity = True if HubmapConst.ENTITY_TYPE_ATTRIBUTE in from_node: type_code = from_node[ HubmapConst.ENTITY_TYPE_ATTRIBUTE] elif HubmapConst.ACTIVITY_TYPE_ATTRIBUTE in from_node: type_code = from_node[ HubmapConst.ACTIVITY_TYPE_ATTRIBUTE] isEntity = False label_text = None if HubmapConst.LAB_IDENTIFIER_ATTRIBUTE in from_node: label_text = from_node[ HubmapConst.LAB_IDENTIFIER_ATTRIBUTE] else: label_text = from_node[ HubmapConst.UUID_ATTRIBUTE] # build metadata attribute from the Metadata node metadata_attribute = {} for attribute_key in to_node: if attribute_key not in self.metadata_ignore_attributes: if attribute_key in self.known_attribute_map: # special case: timestamps if attribute_key == HubmapConst.PROVENANCE_MODIFIED_TIMESTAMP_ATTRIBUTE: provenance_data[ self.known_attribute_map[ attribute_key]] = Provenance.get_json_timestamp( int(to_node[ attribute_key]) ) else: #add any extraneous data to the metadata attribute metadata_attribute[ attribute_key] = to_node[ attribute_key] # Need to add the agent and organization here, plus the appropriate relationships (between the entity and the agent plus orgainzation) agent_record = self.get_agent_record(to_node) agent_unique_id = str(agent_record[ ProvConst.HUBMAP_PROV_USER_EMAIL]).replace( '@', '-') agent_unique_id = str(agent_unique_id).replace( '.', '-') if ProvConst.HUBMAP_PROV_USER_UUID in agent_record: agent_unique_id = agent_record[ ProvConst.HUBMAP_PROV_USER_UUID] agent_uri = Provenance.build_uri( 'hubmap', 'agent', agent_unique_id) organization_record = self.get_organization_record( to_node) organization_uri = Provenance.build_uri( 'hubmap', 'organization', organization_record[ ProvConst.HUBMAP_PROV_GROUP_UUID]) doc_agent = None doc_org = None get_agent = prov_doc.get_record(agent_uri) # only add this once if len(get_agent) == 0: doc_agent = prov_doc.agent( agent_uri, agent_record) else: doc_agent = get_agent[0] get_org = prov_doc.get_record(organization_uri) # only add this once if len(get_org) == 0: doc_org = prov_doc.agent( organization_uri, organization_record) else: doc_org = get_org[0] other_attributes = { ProvConst.PROV_LABEL_ATTRIBUTE: label_text, ProvConst.PROV_TYPE_ATTRIBUTE: type_code, ProvConst.HUBMAP_DOI_ATTRIBUTE: from_node[HubmapConst.DOI_ATTRIBUTE], ProvConst.HUBMAP_DISPLAY_DOI_ATTRIBUTE: from_node[ HubmapConst.DISPLAY_DOI_ATTRIBUTE], ProvConst.HUBMAP_DISPLAY_IDENTIFIER_ATTRIBUTE: label_text, ProvConst.HUBMAP_UUID_ATTRIBUTE: from_node[HubmapConst.UUID_ATTRIBUTE] } # only add metadata if it contains data if len(metadata_attribute) > 0: other_attributes[ ProvConst. HUBMAP_METADATA_ATTRIBUTE] = json.dumps( metadata_attribute) # add the provenance data to the other_attributes other_attributes.update(provenance_data) if isEntity == True: prov_doc.entity( Provenance.build_uri( 'hubmap', 'entities', from_node['uuid']), other_attributes) else: activity_timestamp_json = Provenance.get_json_timestamp( int(to_node[ HubmapConst. PROVENANCE_CREATE_TIMESTAMP_ATTRIBUTE] )) doc_activity = prov_doc.activity( Provenance.build_uri( 'hubmap', 'activities', from_node['uuid']), activity_timestamp_json, activity_timestamp_json, other_attributes) prov_doc.actedOnBehalfOf( doc_agent, doc_org, doc_activity) elif rel_record['rel_data']['type'] in [ HubmapConst.ACTIVITY_OUTPUT_REL, HubmapConst.ACTIVITY_INPUT_REL ]: to_node_uri = None from_node_uri = None if HubmapConst.ENTITY_TYPE_ATTRIBUTE in to_node: to_node_uri = Provenance.build_uri( 'hubmap', 'entities', to_node['uuid']) else: to_node_uri = Provenance.build_uri( 'hubmap', 'activities', to_node['uuid']) if HubmapConst.ENTITY_TYPE_ATTRIBUTE in from_node: from_node_uri = Provenance.build_uri( 'hubmap', 'entities', from_node['uuid']) else: from_node_uri = Provenance.build_uri( 'hubmap', 'activities', from_node['uuid']) if rel_record['rel_data'][ 'type'] == 'ACTIVITY_OUTPUT': #prov_doc.wasGeneratedBy(entity, activity, time, identifier, other_attributes) prov_doc.wasGeneratedBy( to_node_uri, from_node_uri) if rel_record['rel_data'][ 'type'] == 'ACTIVITY_INPUT': #prov_doc.used(activity, entity, time, identifier, other_attributes) prov_doc.used(to_node_uri, from_node_uri) # for now, simply create a "relation" where the fromNode's uuid is connected to a toNode's uuid via a relationship: # ex: {'fromNodeUUID': '42e10053358328c9079f1c8181287b6d', 'relationship': 'ACTIVITY_OUTPUT', 'toNodeUUID': '398400024fda58e293cdb435db3c777e'} rel_data_record = { 'fromNodeUUID': from_node['uuid'], 'relationship': rel_record['rel_data']['type'], 'toNodeUUID': to_node['uuid'] } relation_list.append(rel_data_record) return_data = { 'nodes': node_dict, 'relations': relation_list } except Exception as e: raise e # there is a bug in the JSON serializer. So manually insert the prov prefix output_doc = prov_doc.serialize(indent=2) output_doc = output_doc.replace( '"prefix": {', '"prefix": {\n "prov" : "http://www.w3.org/ns/prov#", ') #output_doc = prov_doc.serialize(format='rdf', rdf_format='trig') #output_doc = prov_doc.serialize(format='provn') return output_doc except ConnectionError as ce: print('A connection error occurred: ', str(ce.args[0])) raise ce except ValueError as ve: print('A value error occurred: ', ve.value) raise ve except Exception as e: print('An exception occurred in get_provenance_history: ' + str(e)) traceback.print_exc()
logpage_ident = get_logpage(str(logpage), prov_doc) return plate_ident # Create a new provenance document d1 = ProvDocument() declare_namespaces(d1) # get V468Cyg # get_plate # process = get_process('2180', d1) try: # scan = get_entity('2462','scan', d1) id = '2180' prov_type = 'lightcurve' # plate_name = get_entity(id,prov_type, d1) # process_name = get_process('9804',d1) # logpage_name = get_logpage('10085',d1) # source_id = get_source('40000001', d1) # plate_ident = get_plate_prov(id, d1) id = get_lightcurve('614-089373', d1) except TypeError: print('the job is still executing...') print(d1.get_provn()) filename = 'prov_' + prov_type + id d1.serialize(filename + '.xml', format='xml') dot = prov_to_dot(d1) dot.write_png(filename + '.png')
def declare_directory(self, value: CWLObjectType) -> ProvEntity: """Register any nested files/directories.""" # FIXME: Calculate a hash-like identifier for directory # so we get same value if it's the same filenames/hashes # in a different location. # For now, mint a new UUID to identify this directory, but # attempt to keep it inside the value dictionary dir_id = cast(str, value.setdefault("@id", uuid.uuid4().urn)) # New annotation file to keep the ORE Folder listing ore_doc_fn = dir_id.replace("urn:uuid:", "directory-") + ".ttl" dir_bundle = self.document.bundle(self.metadata_ns[ore_doc_fn]) coll = self.document.entity( dir_id, [ (PROV_TYPE, WFPROV["Artifact"]), (PROV_TYPE, PROV["Collection"]), (PROV_TYPE, PROV["Dictionary"]), (PROV_TYPE, RO["Folder"]), ], ) # ORE description of ro:Folder, saved separately coll_b = dir_bundle.entity( dir_id, [(PROV_TYPE, RO["Folder"]), (PROV_TYPE, ORE["Aggregation"])], ) self.document.mentionOf(dir_id + "#ore", dir_id, dir_bundle.identifier) # dir_manifest = dir_bundle.entity( # dir_bundle.identifier, {PROV["type"]: ORE["ResourceMap"], # ORE["describes"]: coll_b.identifier}) coll_attribs = [(ORE["isDescribedBy"], dir_bundle.identifier)] coll_b_attribs = [] # type: List[Tuple[Identifier, ProvEntity]] # FIXME: .listing might not be populated yet - hopefully # a later call to this method will sort that is_empty = True if "listing" not in value: get_listing(self.fsaccess, value) for entry in cast(MutableSequence[CWLObjectType], value.get("listing", [])): is_empty = False # Declare child-artifacts entity = self.declare_artefact(entry) self.document.membership(coll, entity) # Membership relation aka our ORE Proxy m_id = uuid.uuid4().urn m_entity = self.document.entity(m_id) m_b = dir_bundle.entity(m_id) # PROV-O style Dictionary # https://www.w3.org/TR/prov-dictionary/#dictionary-ontological-definition # ..as prov.py do not currently allow PROV-N extensions # like hadDictionaryMember(..) m_entity.add_asserted_type(PROV["KeyEntityPair"]) m_entity.add_attributes({ PROV["pairKey"]: entry["basename"], PROV["pairEntity"]: entity, }) # As well as a being a # http://wf4ever.github.io/ro/2016-01-28/ro/#FolderEntry m_b.add_asserted_type(RO["FolderEntry"]) m_b.add_asserted_type(ORE["Proxy"]) m_b.add_attributes({ RO["entryName"]: entry["basename"], ORE["proxyIn"]: coll, ORE["proxyFor"]: entity, }) coll_attribs.append((PROV["hadDictionaryMember"], m_entity)) coll_b_attribs.append((ORE["aggregates"], m_b)) coll.add_attributes(coll_attribs) coll_b.add_attributes(coll_b_attribs) # Also Save ORE Folder as annotation metadata ore_doc = ProvDocument() ore_doc.add_namespace(ORE) ore_doc.add_namespace(RO) ore_doc.add_namespace(UUID) ore_doc.add_bundle(dir_bundle) ore_doc = ore_doc.flattened() ore_doc_path = str(PurePosixPath(METADATA, ore_doc_fn)) with self.research_object.write_bag_file( ore_doc_path) as provenance_file: ore_doc.serialize(provenance_file, format="rdf", rdf_format="turtle") self.research_object.add_annotation(dir_id, [ore_doc_fn], ORE["isDescribedBy"].uri) if is_empty: # Empty directory coll.add_asserted_type(PROV["EmptyCollection"]) coll.add_asserted_type(PROV["EmptyDictionary"]) self.research_object.add_uri(coll.identifier.uri) return coll
class ProvenanceProfile: """ Provenance profile. Populated as the workflow runs. """ def __init__( self, research_object: "ResearchObject", full_name: str, host_provenance: bool, user_provenance: bool, orcid: str, fsaccess: StdFsAccess, run_uuid: Optional[uuid.UUID] = None, ) -> None: """Initialize the provenance profile.""" self.fsaccess = fsaccess self.orcid = orcid self.research_object = research_object self.folder = self.research_object.folder self.document = ProvDocument() self.host_provenance = host_provenance self.user_provenance = user_provenance self.engine_uuid = research_object.engine_uuid # type: str self.add_to_manifest = self.research_object.add_to_manifest if self.orcid: _logger.debug("[provenance] Creator ORCID: %s", self.orcid) self.full_name = full_name if self.full_name: _logger.debug("[provenance] Creator Full name: %s", self.full_name) self.workflow_run_uuid = run_uuid or uuid.uuid4() self.workflow_run_uri = self.workflow_run_uuid.urn # type: str self.generate_prov_doc() def __str__(self) -> str: """Represent this Provenvance profile as a string.""" return "ProvenanceProfile <{}> in <{}>".format( self.workflow_run_uri, self.research_object, ) def generate_prov_doc(self) -> Tuple[str, ProvDocument]: """Add basic namespaces.""" def host_provenance(document: ProvDocument) -> None: """Record host provenance.""" document.add_namespace(CWLPROV) document.add_namespace(UUID) document.add_namespace(FOAF) hostname = getfqdn() # won't have a foaf:accountServiceHomepage for unix hosts, but # we can at least provide hostname document.agent( ACCOUNT_UUID, { PROV_TYPE: FOAF["OnlineAccount"], "prov:location": hostname, CWLPROV["hostname"]: hostname, }, ) self.cwltool_version = "cwltool %s" % versionstring().split()[-1] self.document.add_namespace("wfprov", "http://purl.org/wf4ever/wfprov#") # document.add_namespace('prov', 'http://www.w3.org/ns/prov#') self.document.add_namespace("wfdesc", "http://purl.org/wf4ever/wfdesc#") # TODO: Make this ontology. For now only has cwlprov:image self.document.add_namespace("cwlprov", "https://w3id.org/cwl/prov#") self.document.add_namespace("foaf", "http://xmlns.com/foaf/0.1/") self.document.add_namespace("schema", "http://schema.org/") self.document.add_namespace("orcid", "https://orcid.org/") self.document.add_namespace("id", "urn:uuid:") # NOTE: Internet draft expired 2004-03-04 (!) # https://tools.ietf.org/html/draft-thiemann-hash-urn-01 # TODO: Change to nih:sha-256; hashes # https://tools.ietf.org/html/rfc6920#section-7 self.document.add_namespace("data", "urn:hash::sha1:") # Also needed for docker images self.document.add_namespace(SHA256, "nih:sha-256;") # info only, won't really be used by prov as sub-resources use / self.document.add_namespace("researchobject", self.research_object.base_uri) # annotations self.metadata_ns = self.document.add_namespace( "metadata", self.research_object.base_uri + METADATA + "/") # Pre-register provenance directory so we can refer to its files self.provenance_ns = self.document.add_namespace( "provenance", self.research_object.base_uri + posix_path(PROVENANCE) + "/") ro_identifier_workflow = self.research_object.base_uri + "workflow/packed.cwl#" self.wf_ns = self.document.add_namespace("wf", ro_identifier_workflow) ro_identifier_input = (self.research_object.base_uri + "workflow/primary-job.json#") self.document.add_namespace("input", ro_identifier_input) # More info about the account (e.g. username, fullname) # may or may not have been previously logged by user_provenance() # .. but we always know cwltool was launched (directly or indirectly) # by a user account, as cwltool is a command line tool account = self.document.agent(ACCOUNT_UUID) if self.orcid or self.full_name: person = {PROV_TYPE: PROV["Person"], "prov:type": SCHEMA["Person"]} if self.full_name: person["prov:label"] = self.full_name person["foaf:name"] = self.full_name person["schema:name"] = self.full_name else: # TODO: Look up name from ORCID API? pass agent = self.document.agent(self.orcid or uuid.uuid4().urn, person) self.document.actedOnBehalfOf(account, agent) else: if self.host_provenance: host_provenance(self.document) if self.user_provenance: self.research_object.user_provenance(self.document) # The execution of cwltool wfengine = self.document.agent( self.engine_uuid, { PROV_TYPE: PROV["SoftwareAgent"], "prov:type": WFPROV["WorkflowEngine"], "prov:label": self.cwltool_version, }, ) # FIXME: This datetime will be a bit too delayed, we should # capture when cwltool.py earliest started? self.document.wasStartedBy(wfengine, None, account, datetime.datetime.now()) # define workflow run level activity self.document.activity( self.workflow_run_uri, datetime.datetime.now(), None, { PROV_TYPE: WFPROV["WorkflowRun"], "prov:label": "Run of workflow/packed.cwl#main", }, ) # association between SoftwareAgent and WorkflowRun main_workflow = "wf:main" self.document.wasAssociatedWith(self.workflow_run_uri, self.engine_uuid, main_workflow) self.document.wasStartedBy(self.workflow_run_uri, None, self.engine_uuid, datetime.datetime.now()) return (self.workflow_run_uri, self.document) def evaluate( self, process: Process, job: JobsType, job_order_object: CWLObjectType, research_obj: "ResearchObject", ) -> None: """Evaluate the nature of job.""" if not hasattr(process, "steps"): # record provenance of independent commandline tool executions self.prospective_prov(job) customised_job = copy_job_order(job, job_order_object) self.used_artefacts(customised_job, self.workflow_run_uri) research_obj.create_job(customised_job) elif hasattr(job, "workflow"): # record provenance of workflow executions self.prospective_prov(job) customised_job = copy_job_order(job, job_order_object) self.used_artefacts(customised_job, self.workflow_run_uri) def record_process_start( self, process: Process, job: JobsType, process_run_id: Optional[str] = None) -> Optional[str]: if not hasattr(process, "steps"): process_run_id = self.workflow_run_uri elif not hasattr(job, "workflow"): # commandline tool execution as part of workflow name = "" if isinstance(job, (CommandLineJob, JobBase, WorkflowJob)): name = job.name process_name = urllib.parse.quote(name, safe=":/,#") process_run_id = self.start_process(process_name, datetime.datetime.now()) return process_run_id def start_process( self, process_name: str, when: datetime.datetime, process_run_id: Optional[str] = None, ) -> str: """Record the start of each Process.""" if process_run_id is None: process_run_id = uuid.uuid4().urn prov_label = "Run of workflow/packed.cwl#main/" + process_name self.document.activity( process_run_id, None, None, { PROV_TYPE: WFPROV["ProcessRun"], PROV_LABEL: prov_label }, ) self.document.wasAssociatedWith(process_run_id, self.engine_uuid, str("wf:main/" + process_name)) self.document.wasStartedBy(process_run_id, None, self.workflow_run_uri, when, None, None) return process_run_id def record_process_end( self, process_name: str, process_run_id: str, outputs: Union[CWLObjectType, MutableSequence[CWLObjectType], None], when: datetime.datetime, ) -> None: self.generate_output_prov(outputs, process_run_id, process_name) self.document.wasEndedBy(process_run_id, None, self.workflow_run_uri, when) def declare_file( self, value: CWLObjectType) -> Tuple[ProvEntity, ProvEntity, str]: if value["class"] != "File": raise ValueError("Must have class:File: %s" % value) # Need to determine file hash aka RO filename entity = None # type: Optional[ProvEntity] checksum = None if "checksum" in value: csum = cast(str, value["checksum"]) (method, checksum) = csum.split("$", 1) if method == SHA1 and self.research_object.has_data_file(checksum): entity = self.document.entity("data:" + checksum) if not entity and "location" in value: location = str(value["location"]) # If we made it here, we'll have to add it to the RO with self.fsaccess.open(location, "rb") as fhandle: relative_path = self.research_object.add_data_file(fhandle) # FIXME: This naively relies on add_data_file setting hash as filename checksum = PurePath(relative_path).name entity = self.document.entity("data:" + checksum, {PROV_TYPE: WFPROV["Artifact"]}) if "checksum" not in value: value["checksum"] = f"{SHA1}${checksum}" if not entity and "contents" in value: # Anonymous file, add content as string entity, checksum = self.declare_string(cast( str, value["contents"])) # By here one of them should have worked! if not entity or not checksum: raise ValueError( "class:File but missing checksum/location/content: %r" % value) # Track filename and extension, this is generally useful only for # secondaryFiles. Note that multiple uses of a file might thus record # different names for the same entity, so we'll # make/track a specialized entity by UUID file_id = value.setdefault("@id", uuid.uuid4().urn) # A specialized entity that has just these names file_entity = self.document.entity( file_id, [(PROV_TYPE, WFPROV["Artifact"]), (PROV_TYPE, WF4EVER["File"])], ) # type: ProvEntity if "basename" in value: file_entity.add_attributes( {CWLPROV["basename"]: value["basename"]}) if "nameroot" in value: file_entity.add_attributes( {CWLPROV["nameroot"]: value["nameroot"]}) if "nameext" in value: file_entity.add_attributes({CWLPROV["nameext"]: value["nameext"]}) self.document.specializationOf(file_entity, entity) # Check for secondaries for sec in cast(MutableSequence[CWLObjectType], value.get("secondaryFiles", [])): # TODO: Record these in a specializationOf entity with UUID? if sec["class"] == "File": (sec_entity, _, _) = self.declare_file(sec) elif sec["class"] == "Directory": sec_entity = self.declare_directory(sec) else: raise ValueError(f"Got unexpected secondaryFiles value: {sec}") # We don't know how/when/where the secondary file was generated, # but CWL convention is a kind of summary/index derived # from the original file. As its generally in a different format # then prov:Quotation is not appropriate. self.document.derivation( sec_entity, file_entity, other_attributes={PROV["type"]: CWLPROV["SecondaryFile"]}, ) return file_entity, entity, checksum def declare_directory(self, value: CWLObjectType) -> ProvEntity: """Register any nested files/directories.""" # FIXME: Calculate a hash-like identifier for directory # so we get same value if it's the same filenames/hashes # in a different location. # For now, mint a new UUID to identify this directory, but # attempt to keep it inside the value dictionary dir_id = cast(str, value.setdefault("@id", uuid.uuid4().urn)) # New annotation file to keep the ORE Folder listing ore_doc_fn = dir_id.replace("urn:uuid:", "directory-") + ".ttl" dir_bundle = self.document.bundle(self.metadata_ns[ore_doc_fn]) coll = self.document.entity( dir_id, [ (PROV_TYPE, WFPROV["Artifact"]), (PROV_TYPE, PROV["Collection"]), (PROV_TYPE, PROV["Dictionary"]), (PROV_TYPE, RO["Folder"]), ], ) # ORE description of ro:Folder, saved separately coll_b = dir_bundle.entity( dir_id, [(PROV_TYPE, RO["Folder"]), (PROV_TYPE, ORE["Aggregation"])], ) self.document.mentionOf(dir_id + "#ore", dir_id, dir_bundle.identifier) # dir_manifest = dir_bundle.entity( # dir_bundle.identifier, {PROV["type"]: ORE["ResourceMap"], # ORE["describes"]: coll_b.identifier}) coll_attribs = [(ORE["isDescribedBy"], dir_bundle.identifier)] coll_b_attribs = [] # type: List[Tuple[Identifier, ProvEntity]] # FIXME: .listing might not be populated yet - hopefully # a later call to this method will sort that is_empty = True if "listing" not in value: get_listing(self.fsaccess, value) for entry in cast(MutableSequence[CWLObjectType], value.get("listing", [])): is_empty = False # Declare child-artifacts entity = self.declare_artefact(entry) self.document.membership(coll, entity) # Membership relation aka our ORE Proxy m_id = uuid.uuid4().urn m_entity = self.document.entity(m_id) m_b = dir_bundle.entity(m_id) # PROV-O style Dictionary # https://www.w3.org/TR/prov-dictionary/#dictionary-ontological-definition # ..as prov.py do not currently allow PROV-N extensions # like hadDictionaryMember(..) m_entity.add_asserted_type(PROV["KeyEntityPair"]) m_entity.add_attributes({ PROV["pairKey"]: entry["basename"], PROV["pairEntity"]: entity, }) # As well as a being a # http://wf4ever.github.io/ro/2016-01-28/ro/#FolderEntry m_b.add_asserted_type(RO["FolderEntry"]) m_b.add_asserted_type(ORE["Proxy"]) m_b.add_attributes({ RO["entryName"]: entry["basename"], ORE["proxyIn"]: coll, ORE["proxyFor"]: entity, }) coll_attribs.append((PROV["hadDictionaryMember"], m_entity)) coll_b_attribs.append((ORE["aggregates"], m_b)) coll.add_attributes(coll_attribs) coll_b.add_attributes(coll_b_attribs) # Also Save ORE Folder as annotation metadata ore_doc = ProvDocument() ore_doc.add_namespace(ORE) ore_doc.add_namespace(RO) ore_doc.add_namespace(UUID) ore_doc.add_bundle(dir_bundle) ore_doc = ore_doc.flattened() ore_doc_path = str(PurePosixPath(METADATA, ore_doc_fn)) with self.research_object.write_bag_file( ore_doc_path) as provenance_file: ore_doc.serialize(provenance_file, format="rdf", rdf_format="turtle") self.research_object.add_annotation(dir_id, [ore_doc_fn], ORE["isDescribedBy"].uri) if is_empty: # Empty directory coll.add_asserted_type(PROV["EmptyCollection"]) coll.add_asserted_type(PROV["EmptyDictionary"]) self.research_object.add_uri(coll.identifier.uri) return coll def declare_string(self, value: str) -> Tuple[ProvEntity, str]: """Save as string in UTF-8.""" byte_s = BytesIO(str(value).encode(ENCODING)) data_file = self.research_object.add_data_file(byte_s, content_type=TEXT_PLAIN) checksum = PurePosixPath(data_file).name # FIXME: Don't naively assume add_data_file uses hash in filename! data_id = "data:%s" % PurePosixPath(data_file).stem entity = self.document.entity(data_id, { PROV_TYPE: WFPROV["Artifact"], PROV_VALUE: str(value) }) # type: ProvEntity return entity, checksum def declare_artefact(self, value: Optional[CWLOutputType]) -> ProvEntity: """Create data artefact entities for all file objects.""" if value is None: # FIXME: If this can happen in CWL, we'll # need a better way to represent this in PROV return self.document.entity(CWLPROV["None"], {PROV_LABEL: "None"}) if isinstance(value, (bool, int, float)): # Typically used in job documents for flags # FIXME: Make consistent hash URIs for these # that somehow include the type # (so "1" != 1 != "1.0" != true) entity = self.document.entity(uuid.uuid4().urn, {PROV_VALUE: value}) self.research_object.add_uri(entity.identifier.uri) return entity if isinstance(value, (str, str)): (entity, _) = self.declare_string(value) return entity if isinstance(value, bytes): # If we got here then we must be in Python 3 byte_s = BytesIO(value) data_file = self.research_object.add_data_file(byte_s) # FIXME: Don't naively assume add_data_file uses hash in filename! data_id = "data:%s" % PurePosixPath(data_file).stem return self.document.entity( data_id, { PROV_TYPE: WFPROV["Artifact"], PROV_VALUE: str(value) }, ) if isinstance(value, MutableMapping): if "@id" in value: # Already processed this value, but it might not be in this PROV entities = self.document.get_record(value["@id"]) if entities: return entities[0] # else, unknown in PROV, re-add below as if it's fresh # Base case - we found a File we need to update if value.get("class") == "File": (entity, _, _) = self.declare_file(value) value["@id"] = entity.identifier.uri return entity if value.get("class") == "Directory": entity = self.declare_directory(value) value["@id"] = entity.identifier.uri return entity coll_id = value.setdefault("@id", uuid.uuid4().urn) # some other kind of dictionary? # TODO: also Save as JSON coll = self.document.entity( coll_id, [ (PROV_TYPE, WFPROV["Artifact"]), (PROV_TYPE, PROV["Collection"]), (PROV_TYPE, PROV["Dictionary"]), ], ) if value.get("class"): _logger.warning("Unknown data class %s.", value["class"]) # FIXME: The class might be "http://example.com/somethingelse" coll.add_asserted_type(CWLPROV[value["class"]]) # Let's iterate and recurse coll_attribs = [] # type: List[Tuple[Identifier, ProvEntity]] for (key, val) in value.items(): v_ent = self.declare_artefact(val) self.document.membership(coll, v_ent) m_entity = self.document.entity(uuid.uuid4().urn) # Note: only support PROV-O style dictionary # https://www.w3.org/TR/prov-dictionary/#dictionary-ontological-definition # as prov.py do not easily allow PROV-N extensions m_entity.add_asserted_type(PROV["KeyEntityPair"]) m_entity.add_attributes({ PROV["pairKey"]: str(key), PROV["pairEntity"]: v_ent }) coll_attribs.append((PROV["hadDictionaryMember"], m_entity)) coll.add_attributes(coll_attribs) self.research_object.add_uri(coll.identifier.uri) return coll # some other kind of Collection? # TODO: also save as JSON try: members = [] for each_input_obj in iter(value): # Recurse and register any nested objects e = self.declare_artefact(each_input_obj) members.append(e) # If we reached this, then we were allowed to iterate coll = self.document.entity( uuid.uuid4().urn, [ (PROV_TYPE, WFPROV["Artifact"]), (PROV_TYPE, PROV["Collection"]), ], ) if not members: coll.add_asserted_type(PROV["EmptyCollection"]) else: for member in members: # FIXME: This won't preserve order, for that # we would need to use PROV.Dictionary # with numeric keys self.document.membership(coll, member) self.research_object.add_uri(coll.identifier.uri) # FIXME: list value does not support adding "@id" return coll except TypeError: _logger.warning("Unrecognized type %s of %r", type(value), value) # Let's just fall back to Python repr() entity = self.document.entity(uuid.uuid4().urn, {PROV_LABEL: repr(value)}) self.research_object.add_uri(entity.identifier.uri) return entity def used_artefacts( self, job_order: Union[CWLObjectType, List[CWLObjectType]], process_run_id: str, name: Optional[str] = None, ) -> None: """Add used() for each data artefact.""" if isinstance(job_order, list): for entry in job_order: self.used_artefacts(entry, process_run_id, name) else: # FIXME: Use workflow name in packed.cwl, "main" is wrong for nested workflows base = "main" if name is not None: base += "/" + name for key, value in job_order.items(): prov_role = self.wf_ns[f"{base}/{key}"] try: entity = self.declare_artefact(value) self.document.used( process_run_id, entity, datetime.datetime.now(), None, {"prov:role": prov_role}, ) except OSError: pass def generate_output_prov( self, final_output: Union[CWLObjectType, MutableSequence[CWLObjectType], None], process_run_id: Optional[str], name: Optional[str], ) -> None: """Call wasGeneratedBy() for each output,copy the files into the RO.""" if isinstance(final_output, MutableSequence): for entry in final_output: self.generate_output_prov(entry, process_run_id, name) elif final_output is not None: # Timestamp should be created at the earliest timestamp = datetime.datetime.now() # For each output, find/register the corresponding # entity (UUID) and document it as generated in # a role corresponding to the output for output, value in final_output.items(): entity = self.declare_artefact(value) if name is not None: name = urllib.parse.quote(str(name), safe=":/,#") # FIXME: Probably not "main" in nested workflows role = self.wf_ns[f"main/{name}/{output}"] else: role = self.wf_ns["main/%s" % output] if not process_run_id: process_run_id = self.workflow_run_uri self.document.wasGeneratedBy(entity, process_run_id, timestamp, None, {"prov:role": role}) def prospective_prov(self, job: JobsType) -> None: """Create prospective prov recording as wfdesc prov:Plan.""" if not isinstance(job, WorkflowJob): # direct command line tool execution self.document.entity( "wf:main", { PROV_TYPE: WFDESC["Process"], "prov:type": PROV["Plan"], "prov:label": "Prospective provenance", }, ) return self.document.entity( "wf:main", { PROV_TYPE: WFDESC["Workflow"], "prov:type": PROV["Plan"], "prov:label": "Prospective provenance", }, ) for step in job.steps: stepnametemp = "wf:main/" + str(step.name)[5:] stepname = urllib.parse.quote(stepnametemp, safe=":/,#") provstep = self.document.entity( stepname, { PROV_TYPE: WFDESC["Process"], "prov:type": PROV["Plan"] }, ) self.document.entity( "wf:main", { "wfdesc:hasSubProcess": provstep, "prov:label": "Prospective provenance", }, ) # TODO: Declare roles/parameters as well def activity_has_provenance(self, activity, prov_ids): # type: (str, List[Identifier]) -> None """Add http://www.w3.org/TR/prov-aq/ relations to nested PROV files.""" # NOTE: The below will only work if the corresponding metadata/provenance arcp URI # is a pre-registered namespace in the PROV Document attribs = [(PROV["has_provenance"], prov_id) for prov_id in prov_ids] self.document.activity(activity, other_attributes=attribs) # Tip: we can't use https://www.w3.org/TR/prov-links/#term-mention # as prov:mentionOf() is only for entities, not activities uris = [i.uri for i in prov_ids] self.research_object.add_annotation(activity, uris, PROV["has_provenance"].uri) def finalize_prov_profile(self, name): # type: (Optional[str]) -> List[Identifier] """Transfer the provenance related files to the RO.""" # NOTE: Relative posix path if name is None: # main workflow, fixed filenames filename = "primary.cwlprov" else: # ASCII-friendly filename, avoiding % as we don't want %2520 in manifest.json wf_name = urllib.parse.quote(str(name), safe="").replace("%", "_") # Note that the above could cause overlaps for similarly named # workflows, but that's OK as we'll also include run uuid # which also covers thhe case of this step being run in # multiple places or iterations filename = f"{wf_name}.{self.workflow_run_uuid}.cwlprov" basename = str(PurePosixPath(PROVENANCE) / filename) # TODO: Also support other profiles than CWLProv, e.g. ProvOne # list of prov identifiers of provenance files prov_ids = [] # https://www.w3.org/TR/prov-xml/ with self.research_object.write_bag_file(basename + ".xml") as provenance_file: self.document.serialize(provenance_file, format="xml", indent=4) prov_ids.append(self.provenance_ns[filename + ".xml"]) # https://www.w3.org/TR/prov-n/ with self.research_object.write_bag_file(basename + ".provn") as provenance_file: self.document.serialize(provenance_file, format="provn", indent=2) prov_ids.append(self.provenance_ns[filename + ".provn"]) # https://www.w3.org/Submission/prov-json/ with self.research_object.write_bag_file(basename + ".json") as provenance_file: self.document.serialize(provenance_file, format="json", indent=2) prov_ids.append(self.provenance_ns[filename + ".json"]) # "rdf" aka https://www.w3.org/TR/prov-o/ # which can be serialized to ttl/nt/jsonld (and more!) # https://www.w3.org/TR/turtle/ with self.research_object.write_bag_file(basename + ".ttl") as provenance_file: self.document.serialize(provenance_file, format="rdf", rdf_format="turtle") prov_ids.append(self.provenance_ns[filename + ".ttl"]) # https://www.w3.org/TR/n-triples/ with self.research_object.write_bag_file(basename + ".nt") as provenance_file: self.document.serialize(provenance_file, format="rdf", rdf_format="ntriples") prov_ids.append(self.provenance_ns[filename + ".nt"]) # https://www.w3.org/TR/json-ld/ # TODO: Use a nice JSON-LD context # see also https://eprints.soton.ac.uk/395985/ # 404 Not Found on https://provenance.ecs.soton.ac.uk/prov.jsonld :( with self.research_object.write_bag_file(basename + ".jsonld") as provenance_file: self.document.serialize(provenance_file, format="rdf", rdf_format="json-ld") prov_ids.append(self.provenance_ns[filename + ".jsonld"]) _logger.debug("[provenance] added provenance: %s", prov_ids) return prov_ids
class NIDMExporter(): """ Generic class to parse a result directory to extract the pieces of information to be stored in NIDM-Results and to generate a NIDM-Results export. """ def __init__(self, version, out_dir, zipped=True): out_dirname = os.path.basename(out_dir) out_path = os.path.dirname(out_dir) # Create output path from output name self.zipped = zipped if not self.zipped: out_dirname = out_dirname+".nidm" else: out_dirname = out_dirname+".nidm.zip" out_dir = os.path.join(out_path, out_dirname) # Quit if output path already exists and user doesn't want to overwrite # it if os.path.exists(out_dir): msg = out_dir+" already exists, overwrite?" if not input("%s (y/N) " % msg).lower() == 'y': quit("Bye.") if os.path.isdir(out_dir): shutil.rmtree(out_dir) else: os.remove(out_dir) self.out_dir = out_dir if version == "dev": self.version = {'major': 10000, 'minor': 0, 'revision': 0, 'num': version} else: major, minor, revision = version.split(".") if "-rc" in revision: revision, rc = revision.split("-rc") else: rc = -1 self.version = {'major': int(major), 'minor': int(minor), 'revision': int(revision), 'rc': int(rc), 'num': version} # Initialise prov document self.doc = ProvDocument() self._add_namespaces() # A temp directory that will contain the exported data self.export_dir = tempfile.mkdtemp(prefix="nidm-", dir=out_path) self.prepend_path = '' def parse(self): """ Parse a result directory to extract the pieces information to be stored in NIDM-Results. """ try: # Methods: find_software, find_model_fitting, find_contrasts and # find_inferences should be defined in the children classes and # return a list of NIDM Objects as specified in the objects module # Object of type Software describing the neuroimaging software # package used for the analysis self.software = self._find_software() # List of objects of type ModelFitting describing the # model fitting step in NIDM-Results (main activity: Model # Parameters Estimation) self.model_fittings = self._find_model_fitting() # Dictionary of (key, value) pairs where where key is a tuple # containing the identifier of a ModelParametersEstimation object # and a tuple of identifiers of ParameterEstimateMap objects and # value is an object of type Contrast describing the contrast # estimation step in NIDM-Results (main activity: Contrast # Estimation) self.contrasts = self._find_contrasts() # Inference activity and entities # Dictionary of (key, value) pairs where key is the identifier of a # ContrastEstimation object and value is an object of type # Inference describing the inference step in NIDM-Results (main # activity: Inference) self.inferences = self._find_inferences() except Exception: self.cleanup() raise def cleanup(self): if os.path.isdir(self.export_dir): shutil.rmtree(self.export_dir) def add_object(self, nidm_object, export_file=True): """ Add a NIDMObject to a NIDM-Results export. """ if not export_file: export_dir = None else: export_dir = self.export_dir if not isinstance(nidm_object, NIDMFile): nidm_object.export(self.version, export_dir) else: nidm_object.export(self.version, export_dir, self.prepend_path) # ProvDocument: add object to the bundle if nidm_object.prov_type == PROV['Activity']: self.bundle.activity(nidm_object.id, other_attributes=nidm_object.attributes) elif nidm_object.prov_type == PROV['Entity']: self.bundle.entity(nidm_object.id, other_attributes=nidm_object.attributes) elif nidm_object.prov_type == PROV['Agent']: self.bundle.agent(nidm_object.id, other_attributes=nidm_object.attributes) # self.bundle.update(nidm_object.p) def export(self): """ Generate a NIDM-Results export. """ try: if not os.path.isdir(self.export_dir): os.mkdir(self.export_dir) # Initialise main bundle self._create_bundle(self.version) self.add_object(self.software) # Add model fitting steps if not isinstance(self.model_fittings, list): self.model_fittings = list(self.model_fittings.values()) for model_fitting in self.model_fittings: # Design Matrix # model_fitting.activity.used(model_fitting.design_matrix) self.bundle.used(model_fitting.activity.id, model_fitting.design_matrix.id) self.add_object(model_fitting.design_matrix) # *** Export visualisation of the design matrix self.add_object(model_fitting.design_matrix.image) if model_fitting.design_matrix.image.file is not None: self.add_object(model_fitting.design_matrix.image.file) if model_fitting.design_matrix.hrf_models is not None: # drift model self.add_object(model_fitting.design_matrix.drift_model) if self.version['major'] > 1 or \ (self.version['major'] == 1 and self.version['minor'] >= 3): # Machine # model_fitting.data.wasAttributedTo(model_fitting.machine) self.bundle.wasAttributedTo(model_fitting.data.id, model_fitting.machine.id) self.add_object(model_fitting.machine) # Imaged subject or group(s) for sub in model_fitting.subjects: self.add_object(sub) # model_fitting.data.wasAttributedTo(sub) self.bundle.wasAttributedTo(model_fitting.data.id, sub.id) # Data # model_fitting.activity.used(model_fitting.data) self.bundle.used(model_fitting.activity.id, model_fitting.data.id) self.add_object(model_fitting.data) # Error Model # model_fitting.activity.used(model_fitting.error_model) self.bundle.used(model_fitting.activity.id, model_fitting.error_model.id) self.add_object(model_fitting.error_model) # Parameter Estimate Maps for param_estimate in model_fitting.param_estimates: # param_estimate.wasGeneratedBy(model_fitting.activity) self.bundle.wasGeneratedBy(param_estimate.id, model_fitting.activity.id) self.add_object(param_estimate) self.add_object(param_estimate.coord_space) self.add_object(param_estimate.file) if param_estimate.derfrom is not None: self.bundle.wasDerivedFrom(param_estimate.id, param_estimate.derfrom.id) self.add_object(param_estimate.derfrom) self.add_object(param_estimate.derfrom.file, export_file=False) # Residual Mean Squares Map # model_fitting.rms_map.wasGeneratedBy(model_fitting.activity) self.add_object(model_fitting.rms_map) self.bundle.wasGeneratedBy(model_fitting.rms_map.id, model_fitting.activity.id) self.add_object(model_fitting.rms_map.coord_space) self.add_object(model_fitting.rms_map.file) if model_fitting.rms_map.derfrom is not None: self.bundle.wasDerivedFrom( model_fitting.rms_map.id, model_fitting.rms_map.derfrom.id) self.add_object(model_fitting.rms_map.derfrom) self.add_object(model_fitting.rms_map.derfrom.file, export_file=False) # Resels per Voxel Map if model_fitting.rpv_map is not None: self.add_object(model_fitting.rpv_map) self.bundle.wasGeneratedBy(model_fitting.rpv_map.id, model_fitting.activity.id) self.add_object(model_fitting.rpv_map.coord_space) self.add_object(model_fitting.rpv_map.file) if model_fitting.rpv_map.inf_id is not None: self.bundle.used(model_fitting.rpv_map.inf_id, model_fitting.rpv_map.id) if model_fitting.rpv_map.derfrom is not None: self.bundle.wasDerivedFrom( model_fitting.rpv_map.id, model_fitting.rpv_map.derfrom.id) self.add_object(model_fitting.rpv_map.derfrom) self.add_object(model_fitting.rpv_map.derfrom.file, export_file=False) # Mask # model_fitting.mask_map.wasGeneratedBy(model_fitting.activity) self.bundle.wasGeneratedBy(model_fitting.mask_map.id, model_fitting.activity.id) self.add_object(model_fitting.mask_map) if model_fitting.mask_map.derfrom is not None: self.bundle.wasDerivedFrom( model_fitting.mask_map.id, model_fitting.mask_map.derfrom.id) self.add_object(model_fitting.mask_map.derfrom) self.add_object(model_fitting.mask_map.derfrom.file, export_file=False) # Create coordinate space export self.add_object(model_fitting.mask_map.coord_space) # Create "Mask map" entity self.add_object(model_fitting.mask_map.file) # Grand Mean map # model_fitting.grand_mean_map.wasGeneratedBy(model_fitting.activity) self.bundle.wasGeneratedBy(model_fitting.grand_mean_map.id, model_fitting.activity.id) self.add_object(model_fitting.grand_mean_map) # Coordinate space entity self.add_object(model_fitting.grand_mean_map.coord_space) # Grand Mean Map entity self.add_object(model_fitting.grand_mean_map.file) # Model Parameters Estimation activity self.add_object(model_fitting.activity) self.bundle.wasAssociatedWith(model_fitting.activity.id, self.software.id) # model_fitting.activity.wasAssociatedWith(self.software) # self.add_object(model_fitting) # Add contrast estimation steps analysis_masks = dict() for (model_fitting_id, pe_ids), contrasts in list( self.contrasts.items()): for contrast in contrasts: model_fitting = self._get_model_fitting(model_fitting_id) # for contrast in contrasts: # contrast.estimation.used(model_fitting.rms_map) self.bundle.used(contrast.estimation.id, model_fitting.rms_map.id) # contrast.estimation.used(model_fitting.mask_map) self.bundle.used(contrast.estimation.id, model_fitting.mask_map.id) analysis_masks[contrast.estimation.id] = \ model_fitting.mask_map.id self.bundle.used(contrast.estimation.id, contrast.weights.id) self.bundle.used(contrast.estimation.id, model_fitting.design_matrix.id) # contrast.estimation.wasAssociatedWith(self.software) self.bundle.wasAssociatedWith(contrast.estimation.id, self.software.id) for pe_id in pe_ids: # contrast.estimation.used(pe_id) self.bundle.used(contrast.estimation.id, pe_id) # Create estimation activity self.add_object(contrast.estimation) # Create contrast weights self.add_object(contrast.weights) if contrast.contrast_map is not None: # Create contrast Map # contrast.contrast_map.wasGeneratedBy(contrast.estimation) self.bundle.wasGeneratedBy(contrast.contrast_map.id, contrast.estimation.id) self.add_object(contrast.contrast_map) self.add_object(contrast.contrast_map.coord_space) # Copy contrast map in export directory self.add_object(contrast.contrast_map.file) if contrast.contrast_map.derfrom is not None: self.bundle.wasDerivedFrom( contrast.contrast_map.id, contrast.contrast_map.derfrom.id) self.add_object(contrast.contrast_map.derfrom) self.add_object(contrast.contrast_map.derfrom.file, export_file=False) # Create Std Err. Map (T-tests) or Explained Mean Sq. Map # (F-tests) # contrast.stderr_or_expl_mean_sq_map.wasGeneratedBy # (contrast.estimation) stderr_explmeansq_map = ( contrast.stderr_or_expl_mean_sq_map) self.bundle.wasGeneratedBy( stderr_explmeansq_map.id, contrast.estimation.id) self.add_object(stderr_explmeansq_map) self.add_object( stderr_explmeansq_map.coord_space) if isinstance(stderr_explmeansq_map, ContrastStdErrMap) and \ stderr_explmeansq_map.contrast_var: self.add_object( stderr_explmeansq_map.contrast_var) if stderr_explmeansq_map.var_coord_space: self.add_object( stderr_explmeansq_map.var_coord_space) if stderr_explmeansq_map.contrast_var.coord_space: self.add_object( stderr_explmeansq_map.contrast_var.coord_space) self.add_object( stderr_explmeansq_map.contrast_var.file, export_file=False) self.bundle.wasDerivedFrom( stderr_explmeansq_map.id, stderr_explmeansq_map.contrast_var.id) self.add_object(stderr_explmeansq_map.file) # Create Statistic Map # contrast.stat_map.wasGeneratedBy(contrast.estimation) self.bundle.wasGeneratedBy(contrast.stat_map.id, contrast.estimation.id) self.add_object(contrast.stat_map) self.add_object(contrast.stat_map.coord_space) # Copy Statistical map in export directory self.add_object(contrast.stat_map.file) if contrast.stat_map.derfrom is not None: self.bundle.wasDerivedFrom( contrast.stat_map.id, contrast.stat_map.derfrom.id) self.add_object(contrast.stat_map.derfrom) self.add_object(contrast.stat_map.derfrom.file, export_file=False) # Create Z Statistic Map if contrast.z_stat_map: # contrast.z_stat_map.wasGeneratedBy(contrast.estimation) self.bundle.wasGeneratedBy(contrast.z_stat_map.id, contrast.estimation.id) self.add_object(contrast.z_stat_map) self.add_object(contrast.z_stat_map.coord_space) # Copy Statistical map in export directory self.add_object(contrast.z_stat_map.file) # self.add_object(contrast) # Add inference steps for contrast_id, inferences in list(self.inferences.items()): contrast = self._get_contrast(contrast_id) for inference in inferences: if contrast.z_stat_map: used_id = contrast.z_stat_map.id else: used_id = contrast.stat_map.id # inference.inference_act.used(used_id) self.bundle.used(inference.inference_act.id, used_id) # inference.inference_act.wasAssociatedWith(self.software) self.bundle.wasAssociatedWith(inference.inference_act.id, self.software.id) # self.add_object(inference) # Excursion set # inference.excursion_set.wasGeneratedBy(inference.inference_act) self.bundle.wasGeneratedBy(inference.excursion_set.id, inference.inference_act.id) self.add_object(inference.excursion_set) self.add_object(inference.excursion_set.coord_space) if inference.excursion_set.visu is not None: self.add_object(inference.excursion_set.visu) if inference.excursion_set.visu.file is not None: self.add_object(inference.excursion_set.visu.file) # Copy "Excursion set map" file in export directory self.add_object(inference.excursion_set.file) if inference.excursion_set.clust_map is not None: self.add_object(inference.excursion_set.clust_map) self.add_object(inference.excursion_set.clust_map.file) self.add_object( inference.excursion_set.clust_map.coord_space) if inference.excursion_set.mip is not None: self.add_object(inference.excursion_set.mip) self.add_object(inference.excursion_set.mip.file) # Height threshold if inference.height_thresh.equiv_thresh is not None: for equiv in inference.height_thresh.equiv_thresh: self.add_object(equiv) self.add_object(inference.height_thresh) # Extent threshold if inference.extent_thresh.equiv_thresh is not None: for equiv in inference.extent_thresh.equiv_thresh: self.add_object(equiv) self.add_object(inference.extent_thresh) # Display Mask (potentially more than 1) if inference.disp_mask: for mask in inference.disp_mask: # inference.inference_act.used(mask) self.bundle.used(inference.inference_act.id, mask.id) self.add_object(mask) # Create coordinate space entity self.add_object(mask.coord_space) # Create "Display Mask Map" entity self.add_object(mask.file) if mask.derfrom is not None: self.bundle.wasDerivedFrom(mask.id, mask.derfrom.id) self.add_object(mask.derfrom) self.add_object(mask.derfrom.file, export_file=False) # Search Space self.bundle.wasGeneratedBy(inference.search_space.id, inference.inference_act.id) # inference.search_space.wasGeneratedBy(inference.inference_act) self.add_object(inference.search_space) self.add_object(inference.search_space.coord_space) # Copy "Mask map" in export directory self.add_object(inference.search_space.file) # Peak Definition if inference.peak_criteria: # inference.inference_act.used(inference.peak_criteria) self.bundle.used(inference.inference_act.id, inference.peak_criteria.id) self.add_object(inference.peak_criteria) # Cluster Definition if inference.cluster_criteria: # inference.inference_act.used(inference.cluster_criteria) self.bundle.used(inference.inference_act.id, inference.cluster_criteria.id) self.add_object(inference.cluster_criteria) if inference.clusters: # Clusters and peaks for cluster in inference.clusters: # cluster.wasDerivedFrom(inference.excursion_set) self.bundle.wasDerivedFrom( cluster.id, inference.excursion_set.id) self.add_object(cluster) for peak in cluster.peaks: self.bundle.wasDerivedFrom(peak.id, cluster.id) self.add_object(peak) self.add_object(peak.coordinate) if cluster.cog is not None: self.bundle.wasDerivedFrom(cluster.cog.id, cluster.id) self.add_object(cluster.cog) self.add_object(cluster.cog.coordinate) # Inference activity # inference.inference_act.wasAssociatedWith(inference.software_id) # inference.inference_act.used(inference.height_thresh) self.bundle.used(inference.inference_act.id, inference.height_thresh.id) # inference.inference_act.used(inference.extent_thresh) self.bundle.used(inference.inference_act.id, inference.extent_thresh.id) self.bundle.used(inference.inference_act.id, analysis_masks[contrast.estimation.id]) self.add_object(inference.inference_act) # Write-out prov file self.save_prov_to_files() return self.out_dir except Exception: self.cleanup() raise def _get_model_fitting(self, mf_id): """ Retreive model fitting with identifier 'mf_id' from the list of model fitting objects stored in self.model_fitting """ for model_fitting in self.model_fittings: if model_fitting.activity.id == mf_id: return model_fitting raise Exception("Model fitting activity with id: " + str(mf_id) + " not found.") def _get_contrast(self, con_id): """ Retreive contrast with identifier 'con_id' from the list of contrast objects stored in self.contrasts """ for contrasts in list(self.contrasts.values()): for contrast in contrasts: if contrast.estimation.id == con_id: return contrast raise Exception("Contrast activity with id: " + str(con_id) + " not found.") def _add_namespaces(self): """ Add namespaces to NIDM document. """ self.doc.add_namespace(NIDM) self.doc.add_namespace(NIIRI) self.doc.add_namespace(CRYPTO) self.doc.add_namespace(DCT) self.doc.add_namespace(DC) self.doc.add_namespace(NFO) self.doc.add_namespace(OBO) self.doc.add_namespace(SCR) self.doc.add_namespace(NIF) def _create_bundle(self, version): """ Initialise NIDM-Results bundle. """ # *** Bundle entity if not hasattr(self, 'bundle_ent'): self.bundle_ent = NIDMResultsBundle(nidm_version=version['num']) self.bundle = ProvBundle(identifier=self.bundle_ent.id) self.bundle_ent.export(self.version, self.export_dir) # # provn export # self.bundle = ProvBundle(identifier=bundle_id) self.doc.entity(self.bundle_ent.id, other_attributes=self.bundle_ent.attributes) # *** NIDM-Results Export Activity if version['num'] not in ["1.0.0", "1.1.0"]: if not hasattr(self, 'export_act'): self.export_act = NIDMResultsExport() self.export_act.export(self.version, self.export_dir) # self.doc.update(self.export_act.p) self.doc.activity(self.export_act.id, other_attributes=self.export_act.attributes) # *** bundle was Generated by NIDM-Results Export Activity if not hasattr(self, 'export_time'): self.export_time = str(datetime.datetime.now().time()) if version['num'] in ["1.0.0", "1.1.0"]: self.doc.wasGeneratedBy(entity=self.bundle_ent.id, time=self.export_time) else: # provn self.doc.wasGeneratedBy( entity=self.bundle_ent.id, activity=self.export_act.id, time=self.export_time) # *** NIDM-Results Exporter (Software Agent) if version['num'] not in ["1.0.0", "1.1.0"]: if not hasattr(self, 'exporter'): self.exporter = self._get_exporter() self.exporter.export(self.version, self.export_dir) # self.doc.update(self.exporter.p) self.doc.agent(self.exporter.id, other_attributes=self.exporter.attributes) self.doc.wasAssociatedWith(self.export_act.id, self.exporter.id) def _get_model_parameters_estimations(self, error_model): """ Infer model estimation method from the 'error_model'. Return an object of type ModelParametersEstimation. """ if error_model.dependance == NIDM_INDEPEDENT_ERROR: if error_model.variance_homo: estimation_method = STATO_OLS else: estimation_method = STATO_WLS else: estimation_method = STATO_GLS mpe = ModelParametersEstimation(estimation_method, self.software.id) return mpe def use_prefixes(self, ttl): prefix_file = os.path.join(os.path.dirname(__file__), 'prefixes.csv') context = dict() with open(prefix_file, encoding="ascii") as csvfile: reader = csv.reader(csvfile) next(reader, None) # skip the headers for alphanum_id, prefix, uri in reader: if alphanum_id in ttl: context[prefix] = uri ttl = "@prefix " + prefix + ": <" + uri + "> .\n" + ttl ttl = ttl.replace(alphanum_id, prefix + ":") if uri in ttl: ttl = ttl.replace(alphanum_id, prefix + ":") elif uri in ttl: context[prefix] = uri ttl = "@prefix " + prefix + ": <" + uri + "> .\n" + ttl ttl = ttl.replace(alphanum_id, prefix + ":") return (ttl, context) def save_prov_to_files(self, showattributes=False): """ Write-out provn serialisation to nidm.provn. """ self.doc.add_bundle(self.bundle) # provn_file = os.path.join(self.export_dir, 'nidm.provn') # provn_fid = open(provn_file, 'w') # # FIXME None # # provn_fid.write(self.doc.get_provn(4).replace("None", "-")) # provn_fid.close() ttl_file = os.path.join(self.export_dir, 'nidm.ttl') ttl_txt = self.doc.serialize(format='rdf', rdf_format='turtle') ttl_txt, json_context = self.use_prefixes(ttl_txt) # Add namespaces to json-ld context for namespace in self.doc._namespaces.get_registered_namespaces(): json_context[namespace._prefix] = namespace._uri for namespace in \ list(self.doc._namespaces._default_namespaces.values()): json_context[namespace._prefix] = namespace._uri json_context["xsd"] = "http://www.w3.org/2000/01/rdf-schema#" # Work-around to issue with INF value in rdflib (reported in # https://github.com/RDFLib/rdflib/pull/655) ttl_txt = ttl_txt.replace(' inf ', ' "INF"^^xsd:float ') with open(ttl_file, 'w') as ttl_fid: ttl_fid.write(ttl_txt) # print(json_context) jsonld_file = os.path.join(self.export_dir, 'nidm.json') jsonld_txt = self.doc.serialize(format='rdf', rdf_format='json-ld', context=json_context) with open(jsonld_file, 'w') as jsonld_fid: jsonld_fid.write(jsonld_txt) # provjsonld_file = os.path.join(self.export_dir, 'nidm.provjsonld') # provjsonld_txt = self.doc.serialize(format='jsonld') # with open(provjsonld_file, 'w') as provjsonld_fid: # provjsonld_fid.write(provjsonld_txt) # provn_file = os.path.join(self.export_dir, 'nidm.provn') # provn_txt = self.doc.serialize(format='provn') # with open(provn_file, 'w') as provn_fid: # provn_fid.write(provn_txt) # Post-processing if not self.zipped: # Just rename temp directory to output_path os.rename(self.export_dir, self.out_dir) else: # Create a zip file that contains the content of the temp directory os.chdir(self.export_dir) zf = zipfile.ZipFile(os.path.join("..", self.out_dir), mode='w') try: for root, dirnames, filenames in os.walk("."): for filename in filenames: zf.write(os.path.join(filename)) finally: zf.close() # Need to move up before deleting the folder os.chdir("..") shutil.rmtree(os.path.join("..", self.export_dir))