def psi4_clean():
    """Function to put Psi4 back to a clean state.  In particular deletes
       scratch files and resets Psi variables.  Call as last part of the real
       deriv call to Psi4.
    """
    psi4.clean_variables()
    psi4.clean()
Esempio n. 2
0
    def __init__(self, molecule, basis, numpy_memory=2.e9, scf_type="PK", use_c=False):

        # Set defaults
        maxiter = 40
        E_conv = 1.0E-6
        D_conv = 1.0E-3

        # Integral generation from Psi4's MintsHelper
        start_time = time.time()
        self.basis_name = basis
        self.molecule = molecule
        self.basis = pc.BasisSet.build(self.molecule, "ORBITAL", basis)
        self.mints = pc.MintsHelper(self.basis)
        self.S = np.asarray(self.mints.ao_overlap())

        # Get nbf and ndocc for closed shell molecules
        self.nbf = self.S.shape[0]
        self.nel = sum(self.molecule.Z(n) for n in range(self.molecule.natom()))
        self.nel -= self.molecule.molecular_charge()

        if not (self.nel / 2.0).is_integer():
            raise ValueError("RHF: Molecule did not have an even number of electrons!")

        self.ndocc = int(self.nel / 2.0)

        print('\nNumber of occupied orbitals: %d' % self.ndocc)
        print('Number of basis functions: %d' % self.nbf)

        # Run a quick check to make sure everything will fit into memory
        I_Size = (self.nbf**4) * 8.e-9
        print("\nSize of the ERI tensor will be %4.2f GB." % I_Size)

        # Estimate memory usage
        memory_footprint = I_Size * 1.5
        if I_Size > numpy_memory:
            pc.clean()
            raise Exception("Estimated memory utilization (%4.2f GB) exceeds numpy_memory \
                            limit of %4.2f GB." % (memory_footprint, numpy_memory))

        # Compute required quantities for SCF
        self.V = np.asarray(self.mints.ao_potential())
        self.T = np.asarray(self.mints.ao_kinetic())
        # self.I = np.asarray(self.mints.ao_eri())
        self.JK = jk.build_JK(self.molecule, self.basis_name, scf_type, use_c)

        self.Enuc = self.molecule.nuclear_repulsion_energy()

        print('\nTotal time taken for integrals: %.3f seconds.' % (time.time() - start_time))

        t = time.time()

        # Build H_core
        self.H = self.T + self.V

        # Orthogonalizer A = S^(-1/2) using Psi4's matrix power.
        A = self.mints.ao_overlap()
        A.power(-0.5, 1.e-16)
        self.A = np.asarray(A)

        print('\nTotal time taken for setup: %.3f seconds' % (time.time() - start_time))
Esempio n. 3
0
def _clean_psi_environ(do_clean: bool):
    """Reset work environment to new Psi4 instance state.
    This includes global variables (P::e.globals, P::e.arrays, P::e.options) and any
    non-explicitly-retained PSIO-managed scratch files.

    """
    if do_clean:
        core.clean_variables()
        core.clean_options()
        core.clean()
Esempio n. 4
0
    def compute_energy(self, maxiter=12, E_conv=1.e-6, D_conv=1.e-4):
        print('\nStarting SCF iterations:\n')

        t = time.time()
        E = 0.0
        Eold = 0.0
        Dold = np.zeros_like(self.H)

        self.form_orbitals(self.H)

        for SCF_ITER in range(1, maxiter + 1):

            # Build Fock matrix
            self.build_fock(self.D)

            # Build DIIS error vector
            diis_e = np.dot(self.F, self.D).dot(self.S) - np.dot(
                self.S, self.D).dot(self.F)

            # Make sure that error is normalized!
            diis_e = (self.A).dot(diis_e).dot(self.A)

            # SCF energy and update
            SCF_E = np.einsum('pq,pq->', self.F + self.H, self.D) + self.Enuc
            dRMS = np.mean(diis_e**2)**0.5

            print(
                'SCF Iteration %3d: Energy = %4.16f   dE = % 1.5E   dRMS = %1.5E'
                % (SCF_ITER, SCF_E, (SCF_E - Eold), dRMS))
            if (abs(SCF_E - Eold) < E_conv) and (dRMS < D_conv):
                break

            Eold = SCF_E
            Dold = self.D.copy()

            self.form_orbitals(self.F)

            if SCF_ITER == maxiter:
                pc.clean()
                raise Exception("Maximum number of SCF cycles exceeded.")

        print('Total time for SCF iterations: %.3f seconds \n' %
              (time.time() - t))

        print('Final SCF energy: %.8f hartree' % SCF_E)

        self.SCF_E = SCF_E
        return SCF_E
Esempio n. 5
0
    def __exit__(self, type, value, traceback):

        for calc in (calcid(*x)
                     for x in itertools.product(('m1', 'm2',
                                                 'd'), ('m', 'd'), ('low',
                                                                    'high'))):
            core.IO.set_default_namespace(self.fmt_ns(calc))
            core.IOManager.shared_object().set_specific_retention(
                psif.PSIF_DFSCF_BJ, False)
        try:
            extras.clean_numpy_files()
        except OSError:
            pass
        extras.numpy_files = []
        core.clean()
        os.chdir(self._original_path)
Esempio n. 6
0
    def compute(self,
                mol_name='m1',
                basis_center='m',
                basis_quality='low',
                mp2=False,
                mp2_dm=False,
                save_jk=False):
        calc = calcid(mol_name, basis_center, basis_quality)
        molecule = self.molecule(calc)
        molecule.set_name(self.fmt_ns(calc))
        basis = self.basis_sets[basis_quality]

        self._banner(calc, mp2, mp2_dm)

        optstash = p4util.optproc.OptionsState(['SCF', 'DF_INTS_IO'],
                                               ['DF_INTS_IO'],
                                               ['SCF', 'GUESS'])
        self._init_ns(calc)
        self._init_df(calc)

        with psiopts(
                'SCF_TYPE DF',
                'MP2_TYPE DF',
                'BASIS %s' % basis,
                'DF_BASIS_SCF %s-JKFIT' % basis,
                'DF_BASIS_MP2 %s-RI' % basis,
                'SCF SAVE_JK %s' % save_jk,
                'ONEPDM TRUE',
                'NUM_FROZEN_DOCC %d' % nfrozen_core(molecule),
        ):

            wfn = scf_helper('scf', molecule=molecule)
            assert nfrozen_core(molecule) == wfn.nfrzc()

            if mp2 and not mp2_dm:
                wfn = run_dfmp2('df-mp2', molecule=molecule, ref_wfn=wfn)
            if mp2 and mp2_dm:
                wfn = run_dfmp2_gradient('df-mp2',
                                         molecule=molecule,
                                         ref_wfn=wfn)
            if mp2_dm and not mp2:
                raise ValueError('These options dont make sense')

        self.wfn_cache[calc] = wfn
        optstash.restore()
        core.clean()
        return wfn
Esempio n. 7
0
    def compute_energy(self, maxiter=12, E_conv=1.e-6, D_conv=1.e-4):
        print('\nStarting SCF iterations:\n')

        t = time.time()
        E = 0.0
        Eold = 0.0
        Dold = np.zeros_like(self.H)

        self.form_orbitals(self.H)

        for SCF_ITER in range(1, maxiter + 1):

            # Build Fock matrix
            self.build_fock(self.D)

            # Build DIIS error vector
            diis_e = np.dot(self.F, self.D).dot(self.S) - np.dot(self.S, self.D).dot(self.F)

            # Make sure that error is normalized!
            diis_e = (self.A).dot(diis_e).dot(self.A)

            # SCF energy and update
            SCF_E = np.einsum('pq,pq->', self.F + self.H, self.D) + self.Enuc
            dRMS = np.mean(diis_e**2)**0.5

            print('SCF Iteration %3d: Energy = %4.16f   dE = % 1.5E   dRMS = %1.5E' % (SCF_ITER, SCF_E, (SCF_E - Eold),
                                                                                       dRMS))
            if (abs(SCF_E - Eold) < E_conv) and (dRMS < D_conv):
                break

            Eold = SCF_E
            Dold = self.D.copy()

            self.form_orbitals(self.F)

            if SCF_ITER == maxiter:
                pc.clean()
                raise Exception("Maximum number of SCF cycles exceeded.")

        print('Total time for SCF iterations: %.3f seconds \n' % (time.time() - t))

        print('Final SCF energy: %.8f hartree' % SCF_E)

        self.SCF_E = SCF_E
        return SCF_E
Esempio n. 8
0
    def fd_db_run(self, executable, nThreads=1, jobs_in_progress=False):
        self.pr('(ROA) Running finite-difference computations.\n')
        cwd = os.getcwd() + '/'

        # Want to change to json later.
        def runDisp(subDir):
            rootDir = os.getcwd() + '/'
            self.pr("Running displacement %s\n" % subDir)
            rc = subprocess.run(executable, cwd=rootDir + '/' + subDir)
            if rc.returncode != 0:
                raise ("Tensor calculation failed.")

        def batch(batch_list, batch_size):
            b = []
            for elem in batch_list:
                b.append(elem)
                if len(b) == batch_size:
                    yield b
                    b.clear()
            yield b

        self.update_status_fd_db(print_status=True, jobs_in_progress=False)
        todo = [
            lbl for lbl, info in self.db['jobs'].items()
            if info['status'] == 'not_started'
        ]
        self.pr('(ROA) Remaining jobs todo: {}\n'.format(str(todo)))

        fd_threads = []
        for b in batch(todo, nThreads):
            fd_threads.clear()
            for job_lbl in b:
                t = threading.Thread(target=runDisp, args=(job_lbl, ))
                fd_threads.append(t)
                t.start()
            for t in fd_threads:
                t.join()
        core.clean()
Esempio n. 9
0
def database(name, db_name, **kwargs):
    r"""Function to access the molecule objects and reference energies of
    popular chemical databases.

    :aliases: db()

    :returns: (*float*) Mean absolute deviation of the database in kcal/mol

    :PSI variables:

    .. hlist::
       :columns: 1

       * :psivar:`db_name DATABASE MEAN SIGNED DEVIATION`
       * :psivar:`db_name DATABASE MEAN ABSOLUTE DEVIATION`
       * :psivar:`db_name DATABASE ROOT-MEAN-SQUARE DEVIATION`
       * Python dictionaries of results accessible as ``DB_RGT`` and ``DB_RXN``.

    .. note:: It is very easy to make a database from a collection of xyz files
        using the script :source:`psi4/share/psi4/scripts/ixyz2database.py`.
        See :ref:`sec:createDatabase` for details.

    .. caution:: Some features are not yet implemented. Buy a developer some coffee.

       - In sow/reap mode, use only global options (e.g., the local option set by ``set scf scf_type df`` will not be respected).

    .. note:: To access a database that is not embedded in a |PSIfour|
        distribution, add the path to the directory containing the database
        to the environment variable :envvar:`PYTHONPATH`.

    :type name: str
    :param name: ``'scf'`` || ``'sapt0'`` || ``'ccsd(t)'`` || etc.

        First argument, usually unlabeled. Indicates the computational method
        to be applied to the database. May be any valid argument to
        :py:func:`psi4.driver.energy`.

    :type db_name: str
    :param db_name: ``'BASIC'`` || ``'S22'`` || ``'HTBH'`` || etc.

        Second argument, usually unlabeled. Indicates the requested database
        name, matching (case insensitive) the name of a python file in
        ``psi4/share/databases`` or :envvar:`PYTHONPATH`.  Consult that
        directory for available databases and literature citations.

    :type func: :ref:`function <op_py_function>`
    :param func: |dl| ``energy`` |dr| || ``optimize`` || ``cbs``

        Indicates the type of calculation to be performed on each database
        member. The default performs a single-point ``energy('name')``, while
        ``optimize`` perfoms a geometry optimization on each reagent, and
        ``cbs`` performs a compound single-point energy. If a nested series
        of python functions is intended (see :ref:`sec:intercalls`), use
        keyword ``db_func`` instead of ``func``.

    :type mode: str
    :param mode: |dl| ``'continuous'`` |dr| || ``'sow'`` || ``'reap'``

        Indicates whether the calculations required to complete the
        database are to be run in one file (``'continuous'``) or are to be
        farmed out in an embarrassingly parallel fashion
        (``'sow'``/``'reap'``).  For the latter, run an initial job with
        ``'sow'`` and follow instructions in its output file.

    :type cp: :ref:`boolean <op_py_boolean>`
    :param cp: ``'on'`` || |dl| ``'off'`` |dr|

        Indicates whether counterpoise correction is employed in computing
        interaction energies. Use this option and NOT the ``bsse_type="cp"``
        function for BSSE correction in database().  Option available
        (See :ref:`sec:availableDatabases`) only for databases of bimolecular complexes.

    :type rlxd: :ref:`boolean <op_py_boolean>`
    :param rlxd: ``'on'`` || |dl| ``'off'`` |dr|

        Indicates whether correction for deformation energy is
        employed in computing interaction energies.  Option available
        (See :ref:`sec:availableDatabases`) only for databases of bimolecular complexes
        with non-frozen monomers, e.g., HBC6.

    :type symm: :ref:`boolean <op_py_boolean>`
    :param symm: |dl| ``'on'`` |dr| || ``'off'``

        Indicates whether the native symmetry of the database reagents is
        employed (``'on'``) or whether it is forced to :math:`C_1` symmetry
        (``'off'``). Some computational methods (e.g., SAPT) require no
        symmetry, and this will be set by database().

    :type zpe: :ref:`boolean <op_py_boolean>`
    :param zpe: ``'on'`` || |dl| ``'off'`` |dr|

        Indicates whether zero-point-energy corrections are appended to
        single-point energy values. Option valid only for certain
        thermochemical databases. Disabled until Hessians ready.

    :type benchmark: str
    :param benchmark: |dl| ``'default'`` |dr| || ``'S22A'`` || etc.

        Indicates whether a non-default set of reference energies, if
        available (See :ref:`sec:availableDatabases`), are employed for the
        calculation of error statistics.

    :type tabulate: List[str]
    :param tabulate: |dl| ``[]`` |dr| || ``['scf total energy', 'natom']`` || etc.

        Indicates whether to form tables of variables other than the
        primary requested energy.  Available for any PSI variable.

    :type subset: Union[str, List[str]]
    :param subset:

        Indicates a subset of the full database to run. This is a very
        flexible option and can be used in three distinct ways, outlined
        below. Note that two take a string and the last takes an array.
        See :ref:`sec:availableDatabases` for available values.

        * ``'small'`` || ``'large'`` || ``'equilibrium'``
            Calls predefined subsets of the requested database, either
            ``'small'``, a few of the smallest database members,
            ``'large'``, the largest of the database members, or
            ``'equilibrium'``, the equilibrium geometries for a database
            composed of dissociation curves.
        * ``'BzBz_S'`` || ``'FaOOFaON'`` || ``'ArNe'`` ||  ``'HB'`` || etc.
            For databases composed of dissociation curves, or otherwise
            divided into subsets, individual curves and subsets can be
            called by name. Consult the database python files for available
            molecular systems (case insensitive).
        * ``[1,2,5]`` || ``['1','2','5']`` || ``['BzMe-3.5', 'MeMe-5.0']`` || etc.
            Specify a list of database members to run. Consult the
            database python files for available molecular systems.  This
            is the only portion of database input that is case sensitive;
            choices for this keyword must match the database python file.

    :examples:

    >>> # [1] Two-stage SCF calculation on short, equilibrium, and long helium dimer
    >>> db('scf','RGC10',cast_up='sto-3g',subset=['HeHe-0.85','HeHe-1.0','HeHe-1.5'], tabulate=['scf total energy','natom'])

    >>> # [2] Counterpoise-corrected interaction energies for three complexes in S22
    >>> #     Error statistics computed wrt an old benchmark, S22A
    >>> database('mp2','S22',cp=1,subset=[16,17,8],benchmark='S22A')

    >>> # [3] SAPT0 on the neon dimer dissociation curve
    >>> db('sapt0',subset='NeNe',cp=0,symm=0,db_name='RGC10')

    >>> # [4] Optimize system 1 in database S22, producing tables of scf and mp2 energy
    >>> db('mp2','S22',db_func=optimize,subset=[1], tabulate=['mp2 total energy','current energy'])

    >>> # [5] CCSD on the smallest systems of HTBH, a hydrogen-transfer database
    >>> database('ccsd','HTBH',subset='small', tabulate=['ccsd total energy', 'mp2 total energy'])

    """
    lowername = name  #TODO
    kwargs = p4util.kwargs_lower(kwargs)

    # Wrap any positional arguments into kwargs (for intercalls among wrappers)
    if not ('name' in kwargs) and name:
        kwargs['name'] = name  #.lower()
    if not ('db_name' in kwargs) and db_name:
        kwargs['db_name'] = db_name

    # Establish function to call
    func = kwargs.pop('db_func', kwargs.pop('func', energy))
    kwargs['db_func'] = func
    # Bounce to CP if bsse kwarg (someday)
    if kwargs.get('bsse_type', None) is not None:
        raise ValidationError(
            """Database: Cannot specify bsse_type for database. Use the cp keyword withing database instead."""
        )

    allowoptexceeded = kwargs.get('allowoptexceeded', False)
    optstash = p4util.OptionsState(['WRITER_FILE_LABEL'], ['SCF', 'REFERENCE'])

    # Wrapper wholly defines molecule. discard any passed-in
    kwargs.pop('molecule', None)

    # Paths to search for database files: here + PSIPATH + library + PYTHONPATH
    db_paths = []
    db_paths.append(os.getcwd())
    db_paths.extend(os.environ.get('PSIPATH', '').split(os.path.pathsep))
    db_paths.append(os.path.join(core.get_datadir(), 'databases'))
    db_paths.append(os.path.dirname(__file__))
    db_paths = list(map(os.path.abspath, db_paths))
    sys.path[1:1] = db_paths
    # TODO this should be modernized a la interface_cfour

    # Define path and load module for requested database
    database = p4util.import_ignorecase(db_name)
    if database is None:
        core.print_out('\nPython module for database %s failed to load\n\n' %
                       (db_name))
        core.print_out('\nSearch path that was tried:\n')
        core.print_out(", ".join(map(str, sys.path)))
        raise ValidationError("Python module loading problem for database " +
                              str(db_name))
    else:
        dbse = database.dbse
        HRXN = database.HRXN
        ACTV = database.ACTV
        RXNM = database.RXNM
        BIND = database.BIND
        TAGL = database.TAGL
        GEOS = database.GEOS
        try:
            DATA = database.DATA
        except AttributeError:
            DATA = {}

    user_writer_file_label = core.get_global_option('WRITER_FILE_LABEL')
    user_reference = core.get_global_option('REFERENCE')

    # Configuration based upon e_name & db_name options
    #   Force non-supramolecular if needed
    if not hasattr(lowername, '__call__') and re.match(r'^.*sapt', lowername):
        try:
            database.ACTV_SA
        except AttributeError:
            raise ValidationError(
                'Database %s not suitable for non-supramolecular calculation.'
                % (db_name))
        else:
            ACTV = database.ACTV_SA
    #   Force open-shell if needed
    openshell_override = 0
    if user_reference in ['RHF', 'RKS']:
        try:
            database.isOS
        except AttributeError:
            pass
        else:
            if p4util.yes.match(str(database.isOS)):
                openshell_override = 1
                core.print_out(
                    '\nSome reagents in database %s require an open-shell reference; will be reset to UHF/UKS as needed.\n'
                    % (db_name))

    # Configuration based upon database keyword options
    #   Option symmetry- whether symmetry treated normally or turned off (currently req'd for dfmp2 & dft)
    db_symm = kwargs.get('symm', True)

    symmetry_override = 0
    if db_symm is False:
        symmetry_override = 1
    elif db_symm is True:
        pass
    else:
        raise ValidationError("""Symmetry mode '%s' not valid.""" % (db_symm))

    #   Option mode of operation- whether db run in one job or files farmed out
    db_mode = kwargs.pop('db_mode', kwargs.pop('mode', 'continuous')).lower()
    kwargs['db_mode'] = db_mode

    if db_mode == 'continuous':
        pass
    elif db_mode == 'sow':
        pass
    elif db_mode == 'reap':
        db_linkage = kwargs.get('linkage', None)
        if db_linkage is None:
            raise ValidationError(
                """Database execution mode 'reap' requires a linkage option."""
            )
    else:
        raise ValidationError("""Database execution mode '%s' not valid.""" %
                              (db_mode))

    #   Option counterpoise- whether for interaction energy databases run in bsse-corrected or not
    db_cp = kwargs.get('cp', False)

    if db_cp is True:
        try:
            database.ACTV_CP
        except AttributeError:
            raise ValidationError(
                """Counterpoise correction mode 'yes' invalid for database %s."""
                % (db_name))
        else:
            ACTV = database.ACTV_CP
    elif db_cp is False:
        pass
    else:
        raise ValidationError(
            """Counterpoise correction mode '%s' not valid.""" % (db_cp))

    #   Option relaxed- whether for non-frozen-monomer interaction energy databases include deformation correction or not?
    db_rlxd = kwargs.get('rlxd', False)

    if db_rlxd is True:
        if db_cp is True:
            try:
                database.ACTV_CPRLX
                database.RXNM_CPRLX
            except AttributeError:
                raise ValidationError(
                    'Deformation and counterpoise correction mode \'yes\' invalid for database %s.'
                    % (db_name))
            else:
                ACTV = database.ACTV_CPRLX
                RXNM = database.RXNM_CPRLX
        elif db_cp is False:
            try:
                database.ACTV_RLX
            except AttributeError:
                raise ValidationError(
                    'Deformation correction mode \'yes\' invalid for database %s.'
                    % (db_name))
            else:
                ACTV = database.ACTV_RLX
    elif db_rlxd is False:
        #elif no.match(str(db_rlxd)):
        pass
    else:
        raise ValidationError('Deformation correction mode \'%s\' not valid.' %
                              (db_rlxd))

    #   Option zero-point-correction- whether for thermochem databases jobs are corrected by zpe
    db_zpe = kwargs.get('zpe', False)

    if db_zpe is True:
        raise ValidationError(
            'Zero-point-correction mode \'yes\' not yet implemented.')
    elif db_zpe is False:
        pass
    else:
        raise ValidationError('Zero-point-correction \'mode\' %s not valid.' %
                              (db_zpe))

    #   Option benchmark- whether error statistics computed wrt alternate reference energies
    db_benchmark = 'default'
    if 'benchmark' in kwargs:
        db_benchmark = kwargs['benchmark']

        if db_benchmark.lower() == 'default':
            pass
        else:
            BIND = p4util.getattr_ignorecase(database, 'BIND_' + db_benchmark)
            if BIND is None:
                raise ValidationError(
                    'Special benchmark \'%s\' not available for database %s.' %
                    (db_benchmark, db_name))

    #   Option tabulate- whether tables of variables other than primary energy method are formed
    # TODO db(func=cbs,tabulate=[non-current-energy])  # broken
    db_tabulate = []
    if 'tabulate' in kwargs:
        db_tabulate = kwargs['tabulate']

    #   Option subset- whether all of the database or just a portion is run
    db_subset = HRXN
    if 'subset' in kwargs:
        db_subset = kwargs['subset']

    if isinstance(db_subset, (str, bytes)):
        if db_subset.lower() == 'small':
            try:
                database.HRXN_SM
            except AttributeError:
                raise ValidationError(
                    """Special subset 'small' not available for database %s."""
                    % (db_name))
            else:
                HRXN = database.HRXN_SM
        elif db_subset.lower() == 'large':
            try:
                database.HRXN_LG
            except AttributeError:
                raise ValidationError(
                    """Special subset 'large' not available for database %s."""
                    % (db_name))
            else:
                HRXN = database.HRXN_LG
        elif db_subset.lower() == 'equilibrium':
            try:
                database.HRXN_EQ
            except AttributeError:
                raise ValidationError(
                    """Special subset 'equilibrium' not available for database %s."""
                    % (db_name))
            else:
                HRXN = database.HRXN_EQ
        else:
            HRXN = p4util.getattr_ignorecase(database, db_subset)
            if HRXN is None:
                HRXN = p4util.getattr_ignorecase(database, 'HRXN_' + db_subset)
                if HRXN is None:
                    raise ValidationError(
                        """Special subset '%s' not available for database %s."""
                        % (db_subset, db_name))
    else:
        temp = []
        for rxn in db_subset:
            if rxn in HRXN:
                temp.append(rxn)
            else:
                raise ValidationError(
                    """Subset element '%s' not a member of database %s.""" %
                    (str(rxn), db_name))
        HRXN = temp

    temp = []
    for rxn in HRXN:
        temp.append(ACTV['%s-%s' % (dbse, rxn)])
    HSYS = p4util.drop_duplicates(sum(temp, []))

    # Sow all the necessary reagent computations
    core.print_out("\n\n")
    p4util.banner(("Database %s Computation" % (db_name)))
    core.print_out("\n")

    #   write index of calcs to output file
    instructions = """\n    The database single-job procedure has been selected through mode='continuous'.\n"""
    instructions += """    Calculations for the reagents will proceed in the order below and will be followed\n"""
    instructions += """    by summary results for the database.\n\n"""
    for rgt in HSYS:
        instructions += """                    %-s\n""" % (rgt)
    core.print_out(instructions)

    #   Loop through chemical systems
    ERGT = {}
    ERXN = {}
    VRGT = {}
    VRXN = {}
    for rgt in HSYS:
        VRGT[rgt] = {}

        core.print_out('\n')
        p4util.banner(' Database {} Computation: Reagent {} \n   {}'.format(
            db_name, rgt, TAGL[rgt]))
        core.print_out('\n')

        molecule = core.Molecule.from_dict(GEOS[rgt].to_dict())
        molecule.set_name(rgt)
        molecule.update_geometry()

        if symmetry_override:
            molecule.reset_point_group('c1')
            molecule.fix_orientation(True)
            molecule.fix_com(True)
            molecule.update_geometry()

        if (openshell_override) and (molecule.multiplicity() != 1):
            if user_reference == 'RHF':
                core.set_global_option('REFERENCE', 'UHF')
            elif user_reference == 'RKS':
                core.set_global_option('REFERENCE', 'UKS')

        core.set_global_option(
            'WRITER_FILE_LABEL', user_writer_file_label +
            ('' if user_writer_file_label == '' else '-') + rgt)

        if allowoptexceeded:
            try:
                ERGT[rgt] = func(molecule=molecule, **kwargs)
            except ConvergenceError:
                core.print_out(f"Optimization exceeded cycles for {rgt}")
                ERGT[rgt] = 0.0
        else:
            ERGT[rgt] = func(molecule=molecule, **kwargs)
        core.print_variables()
        core.print_out("   Database Contributions Map:\n   {}\n".format('-' *
                                                                        75))
        for rxn in HRXN:
            db_rxn = dbse + '-' + str(rxn)
            if rgt in ACTV[db_rxn]:
                core.print_out(
                    '   reagent {} contributes by {:.4f} to reaction {}\n'.
                    format(rgt, RXNM[db_rxn][rgt], db_rxn))
        core.print_out('\n')
        for envv in db_tabulate:
            VRGT[rgt][envv.upper()] = core.variable(envv)
        core.set_global_option("REFERENCE", user_reference)
        core.clean()
        #core.opt_clean()
        core.clean_variables()

    # Reap all the necessary reaction computations
    core.print_out("\n")
    p4util.banner(("Database %s Results" % (db_name)))
    core.print_out("\n")

    maxactv = []
    for rxn in HRXN:
        maxactv.append(len(ACTV[dbse + '-' + str(rxn)]))
    maxrgt = max(maxactv)
    table_delimit = '-' * (62 + 20 * maxrgt)
    tables = ''

    #   find any reactions that are incomplete
    FAIL = collections.defaultdict(int)
    for rxn in HRXN:
        db_rxn = dbse + '-' + str(rxn)
        for i in range(len(ACTV[db_rxn])):
            if abs(ERGT[ACTV[db_rxn][i]]) < 1.0e-12:
                if not allowoptexceeded:
                    FAIL[rxn] = 1

    #   tabulate requested process::environment variables
    tables += """   For each VARIABLE requested by tabulate, a 'Reaction Value' will be formed from\n"""
    tables += """   'Reagent' values according to weightings 'Wt', as for the REQUESTED ENERGY below.\n"""
    tables += """   Depending on the nature of the variable, this may or may not make any physical sense.\n"""
    for rxn in HRXN:
        db_rxn = dbse + '-' + str(rxn)
        VRXN[db_rxn] = {}

    for envv in db_tabulate:
        envv = envv.upper()
        tables += """\n   ==> %s <==\n\n""" % (envv.title())
        tables += _tblhead(maxrgt, table_delimit, 2)

        for rxn in HRXN:
            db_rxn = dbse + '-' + str(rxn)

            if FAIL[rxn]:
                tables += """\n%23s   %8s %8s %8s %8s""" % (db_rxn, '', '****',
                                                            '', '')
                for i in range(len(ACTV[db_rxn])):
                    tables += """ %16.8f %2.0f""" % (VRGT[
                        ACTV[db_rxn][i]][envv], RXNM[db_rxn][ACTV[db_rxn][i]])

            else:
                VRXN[db_rxn][envv] = 0.0
                for i in range(len(ACTV[db_rxn])):
                    VRXN[db_rxn][envv] += VRGT[
                        ACTV[db_rxn][i]][envv] * RXNM[db_rxn][ACTV[db_rxn][i]]

                tables += """\n%23s        %16.8f                  """ % (
                    db_rxn, VRXN[db_rxn][envv])
                for i in range(len(ACTV[db_rxn])):
                    tables += """ %16.8f %2.0f""" % (VRGT[
                        ACTV[db_rxn][i]][envv], RXNM[db_rxn][ACTV[db_rxn][i]])
        tables += """\n   %s\n""" % (table_delimit)

    #   tabulate primary requested energy variable with statistics
    count_rxn = 0
    minDerror = 100000.0
    maxDerror = 0.0
    MSDerror = 0.0
    MADerror = 0.0
    RMSDerror = 0.0

    tables += """\n   ==> %s <==\n\n""" % ('Requested Energy')
    tables += _tblhead(maxrgt, table_delimit, 1)
    for rxn in HRXN:
        db_rxn = dbse + '-' + str(rxn)

        if FAIL[rxn]:
            tables += """\n%23s   %8.4f %8s %10s %10s""" % (
                db_rxn, BIND[db_rxn], '****', '****', '****')
            for i in range(len(ACTV[db_rxn])):
                tables += """ %16.8f %2.0f""" % (ERGT[ACTV[db_rxn][i]],
                                                 RXNM[db_rxn][ACTV[db_rxn][i]])

        else:
            ERXN[db_rxn] = 0.0
            for i in range(len(ACTV[db_rxn])):
                ERXN[db_rxn] += ERGT[ACTV[db_rxn][i]] * RXNM[db_rxn][
                    ACTV[db_rxn][i]]
            error = constants.hartree2kcalmol * ERXN[db_rxn] - BIND[db_rxn]

            tables += """\n%23s   %8.4f %8.4f %10.4f %10.4f""" % (
                db_rxn, BIND[db_rxn], constants.hartree2kcalmol * ERXN[db_rxn],
                error, error * constants.cal2J)
            for i in range(len(ACTV[db_rxn])):
                tables += """ %16.8f %2.0f""" % (ERGT[ACTV[db_rxn][i]],
                                                 RXNM[db_rxn][ACTV[db_rxn][i]])

            if abs(error) < abs(minDerror):
                minDerror = error
            if abs(error) > abs(maxDerror):
                maxDerror = error
            MSDerror += error
            MADerror += abs(error)
            RMSDerror += error * error
            count_rxn += 1
    tables += """\n   %s\n""" % (table_delimit)

    if count_rxn:

        MSDerror /= float(count_rxn)
        MADerror /= float(count_rxn)
        RMSDerror = math.sqrt(RMSDerror / float(count_rxn))

        tables += """%23s %19s %10.4f %10.4f\n""" % (
            'Minimal Dev', '', minDerror, minDerror * constants.cal2J)
        tables += """%23s %19s %10.4f %10.4f\n""" % (
            'Maximal Dev', '', maxDerror, maxDerror * constants.cal2J)
        tables += """%23s %19s %10.4f %10.4f\n""" % (
            'Mean Signed Dev', '', MSDerror, MSDerror * constants.cal2J)
        tables += """%23s %19s %10.4f %10.4f\n""" % (
            'Mean Absolute Dev', '', MADerror, MADerror * constants.cal2J)
        tables += """%23s %19s %10.4f %10.4f\n""" % (
            'RMS Dev', '', RMSDerror, RMSDerror * constants.cal2J)
        tables += """   %s\n""" % (table_delimit)

        core.set_variable('%s DATABASE MEAN SIGNED DEVIATION' % (db_name),
                          MSDerror)
        core.set_variable('%s DATABASE MEAN ABSOLUTE DEVIATION' % (db_name),
                          MADerror)
        core.set_variable('%s DATABASE ROOT-MEAN-SQUARE DEVIATION' % (db_name),
                          RMSDerror)

        core.print_out(tables)
        finalenergy = MADerror

    else:
        finalenergy = 0.0

    optstash.restore()

    DB_RGT.clear()
    DB_RGT.update(VRGT)
    DB_RXN.clear()
    DB_RXN.update(VRXN)
    return finalenergy
Esempio n. 10
0
def compute_nbody_components(func, method_string, metadata):
    """Computes requested N-body components.

    Performs requested computations for psi4::Molecule object `molecule` according to
    `compute_list` with function `func` at `method_string` level of theory.

    Parameters
    ----------
    func : {'energy', 'gradient', 'hessian'}
        Function object to be called within N-Body procedure.
    method_string : str
        Indicates level of theory to be passed to function `func`.
    metadata : dict of str
        Dictionary of N-body metadata.

        Required ``'key': value`` pairs:
        ``'compute_list'``: dict of int: set
            List of computations to perform.  Keys indicate body-levels, e.g,. `compute_list[2]` is the
            list of all 2-body computations required.
        ``'kwargs'``: dict
            Arbitrary keyword arguments to be passed to function `func`.

    Returns
    -------
    dict of str: dict
        Dictionary containing computed N-body components.

        Contents:
        ``'energies'``: dict of set: float64
               Dictionary containing all energy components required for given N-body procedure.
        ``'ptype'``: dict of set: float64 or dict of set: psi4.Matrix
               Dictionary of returned quantities from calls of function `func` during N-body computations
        ``'intermediates'``: dict of str: float64
               Dictionary of psivars for intermediate N-body computations to be set at the end of the
               N-body procedure.
    """
    # Get required metadata
    kwargs = metadata['kwargs']
    molecule = metadata['molecule']
    #molecule = core.get_active_molecule()
    compute_list = metadata['compute_dict']['all']

    # Now compute the energies
    energies_dict = {}
    gradients_dict = {}
    ptype_dict = {}
    intermediates_dict = {}
    if kwargs.get('charge_method', False) and not metadata['embedding_charges']:
        metadata['embedding_charges'] = driver_nbody_helper.compute_charges(kwargs['charge_method'],
                                            kwargs.get('charge_type', 'MULLIKEN_CHARGES').upper(), molecule)
    for count, n in enumerate(compute_list.keys()):
        core.print_out("\n   ==> N-Body: Now computing %d-body complexes <==\n\n" % n)
        total = len(compute_list[n])
        for num, pair in enumerate(compute_list[n]):
            core.print_out(
                "\n       N-Body: Computing complex (%d/%d) with fragments %s in the basis of fragments %s.\n\n" %
                (num + 1, total, str(pair[0]), str(pair[1])))
            ghost = list(set(pair[1]) - set(pair[0]))

            current_mol = molecule.extract_subsets(list(pair[0]), ghost)
            current_mol.set_name("%s_%i_%i" % (current_mol.name(), count, num))
            if metadata['embedding_charges']: driver_nbody_helper.electrostatic_embedding(metadata, pair=pair)
            # Save energies info
            ptype_dict[pair], wfn = func(method_string, molecule=current_mol, return_wfn=True, **kwargs)
            core.set_global_option_python('EXTERN', None)
            energies_dict[pair] = core.variable("CURRENT ENERGY")
            gradients_dict[pair] = wfn.gradient()
            var_key = "N-BODY (%s)@(%s) TOTAL ENERGY" % (', '.join([str(i) for i in pair[0]]), ', '.join(
                [str(i) for i in pair[1]]))
            intermediates_dict[var_key] = core.variable("CURRENT ENERGY")
            core.print_out("\n       N-Body: Complex Energy (fragments = %s, basis = %s: %20.14f)\n" % (str(
                pair[0]), str(pair[1]), energies_dict[pair]))
            # Flip this off for now, needs more testing
            #if 'cp' in bsse_type_list and (len(bsse_type_list) == 1):
            #    core.set_global_option('DF_INTS_IO', 'LOAD')

            core.clean()

    return {
        'energies': energies_dict,
        'gradients': gradients_dict,
        'ptype': ptype_dict,
        'intermediates': intermediates_dict
    }
Esempio n. 11
0
def compute_nbody_components(func, method_string, metadata):
    """Computes requested N-body components.

    Performs requested computations for psi4::Molecule object `molecule` according to
    `compute_list` with function `func` at `method_string` level of theory.

    Parameters
    ----------
    func : str
        {'energy', 'gradient', 'hessian'}
        Function object to be called within N-Body procedure.
    method_string : str
        Indicates level of theory to be passed to function `func`.
    metadata : dict of str
        Dictionary of N-body metadata.

        Required ``'key': value`` pairs:
        ``'compute_list'``: dict of int: set
            List of computations to perform.  Keys indicate body-levels, e.g,. `compute_list[2]` is the
            list of all 2-body computations required.
        ``'kwargs'``: dict
            Arbitrary keyword arguments to be passed to function `func`.

    Returns
    -------
    dict of str: dict
        Dictionary containing computed N-body components.

        Contents:
        ``'energies'``: dict of set: float64
               Dictionary containing all energy components required for given N-body procedure.
        ``'ptype'``: dict of set: float64 or dict of set: psi4.Matrix
               Dictionary of returned quantities from calls of function `func` during N-body computations
        ``'intermediates'``: dict of str: float64
               Dictionary of psivars for intermediate N-body computations to be set at the end of the
               N-body procedure.
    """
    # Get required metadata
    kwargs = metadata['kwargs']
    molecule = metadata['molecule']
    #molecule = core.get_active_molecule()
    compute_list = metadata['compute_dict']['all']

    # Now compute the energies
    energies_dict = {}
    gradients_dict = {}
    ptype_dict = {}
    intermediates_dict = {}
    if kwargs.get('charge_method',
                  False) and not metadata['embedding_charges']:
        metadata['embedding_charges'] = driver_nbody_helper.compute_charges(
            kwargs['charge_method'],
            kwargs.get('charge_type', 'MULLIKEN_CHARGES').upper(), molecule)
    for count, n in enumerate(compute_list.keys()):
        core.print_out(
            "\n   ==> N-Body: Now computing %d-body complexes <==\n\n" % n)
        total = len(compute_list[n])
        for num, pair in enumerate(compute_list[n]):
            core.print_out(
                "\n       N-Body: Computing complex (%d/%d) with fragments %s in the basis of fragments %s.\n\n"
                % (num + 1, total, str(pair[0]), str(pair[1])))
            ghost = list(set(pair[1]) - set(pair[0]))

            current_mol = molecule.extract_subsets(list(pair[0]), ghost)
            current_mol.set_name("%s_%i_%i" % (current_mol.name(), count, num))
            if metadata['embedding_charges']:
                driver_nbody_helper.electrostatic_embedding(metadata,
                                                            pair=pair)
            # Save energies info
            ptype_dict[pair], wfn = func(method_string,
                                         molecule=current_mol,
                                         return_wfn=True,
                                         **kwargs)
            core.set_global_option_python('EXTERN', None)
            energies_dict[pair] = core.variable("CURRENT ENERGY")
            gradients_dict[pair] = wfn.gradient()
            var_key = "N-BODY (%s)@(%s) TOTAL ENERGY" % (', '.join(
                [str(i)
                 for i in pair[0]]), ', '.join([str(i) for i in pair[1]]))
            intermediates_dict[var_key] = core.variable("CURRENT ENERGY")
            core.print_out(
                "\n       N-Body: Complex Energy (fragments = %s, basis = %s: %20.14f)\n"
                % (str(pair[0]), str(pair[1]), energies_dict[pair]))
            # Flip this off for now, needs more testing
            #if 'cp' in bsse_type_list and (len(bsse_type_list) == 1):
            #    core.set_global_option('DF_INTS_IO', 'LOAD')

            core.clean()

    return {
        'energies': energies_dict,
        'gradients': gradients_dict,
        'ptype': ptype_dict,
        'intermediates': intermediates_dict
    }
Esempio n. 12
0
def _clean_psi_environ(do_clean):
    if do_clean:
        psi4.core.clean_variables()
        psi4.core.clean_options()
        core.clean()
Esempio n. 13
0
def nbody_gufunc(func, method_string, **kwargs):
    """
    Computes the nbody interaction energy, gradient, or Hessian depending on input.
    This is a generalized univeral function for computing interaction quantities.

    :returns: *return type of func* |w--w| The interaction data.

    :returns: (*float*, :ref:`Wavefunction<sec:psimod_Wavefunction>`) |w--w| interaction data and wavefunction with energy/gradient/hessian set appropriately when **return_wfn** specified.

    :type func: function
    :param func: ``energy`` || etc.

        Python function that accepts method_string and a molecule. Returns a
        energy, gradient, or Hessian as requested.

    :type method_string: string
    :param method_string: ``'scf'`` || ``'mp2'`` || ``'ci5'`` || etc.

        First argument, lowercase and usually unlabeled. Indicates the computational
        method to be passed to func.

    :type molecule: :ref:`molecule <op_py_molecule>`
    :param molecule: ``h2o`` || etc.

        The target molecule, if not the last molecule defined.

    :type return_wfn: :ref:`boolean <op_py_boolean>`
    :param return_wfn: ``'on'`` || |dl| ``'off'`` |dr|

        Indicate to additionally return the :ref:`Wavefunction<sec:psimod_Wavefunction>`
        calculation result as the second element of a tuple.

    :type bsse_type: string or list
    :param bsse_type: ``'cp'`` || ``['nocp', 'vmfc']`` || |dl| ``None`` |dr| || etc.

        Type of BSSE correction to compute: CP, NoCP, or VMFC. The first in this
        list is returned by this function. By default, this function is not called.

    :type max_nbody: int
    :param max_nbody: ``3`` || etc.

        Maximum n-body to compute, cannot exceed the number of fragments in the moleucle.

    :type ptype: string
    :param ptype: ``'energy'`` || ``'gradient'`` || ``'hessian'``

        Type of the procedure passed in.

    :type return_total_data: :ref:`boolean <op_py_boolean>`
    :param return_total_data: ``'on'`` || |dl| ``'off'`` |dr|

        If True returns the total data (energy/gradient/etc) of the system,
        otherwise returns interaction data.
    """

    ### ==> Parse some kwargs <==
    kwargs = p4util.kwargs_lower(kwargs)
    return_wfn = kwargs.pop('return_wfn', False)
    ptype = kwargs.pop('ptype', None)
    return_total_data = kwargs.pop('return_total_data', False)
    molecule = kwargs.pop('molecule', core.get_active_molecule())
    molecule.update_geometry()
    core.clean_variables()

    if ptype not in ['energy', 'gradient', 'hessian']:
        raise ValidationError(
            """N-Body driver: The ptype '%s' is not regonized.""" % ptype)

    # Figure out BSSE types
    do_cp = False
    do_nocp = False
    do_vmfc = False
    return_method = False

    # Must be passed bsse_type
    bsse_type_list = kwargs.pop('bsse_type')
    if bsse_type_list is None:
        raise ValidationError("N-Body GUFunc: Must pass a bsse_type")
    if not isinstance(bsse_type_list, list):
        bsse_type_list = [bsse_type_list]

    for num, btype in enumerate(bsse_type_list):
        if btype.lower() == 'cp':
            do_cp = True
            if (num == 0): return_method = 'cp'
        elif btype.lower() == 'nocp':
            do_nocp = True
            if (num == 0): return_method = 'nocp'
        elif btype.lower() == 'vmfc':
            do_vmfc = True
            if (num == 0): return_method = 'vmfc'
        else:
            raise ValidationError(
                "N-Body GUFunc: bsse_type '%s' is not recognized" %
                btype.lower())

    max_nbody = kwargs.get('max_nbody', -1)
    max_frag = molecule.nfragments()
    if max_nbody == -1:
        max_nbody = molecule.nfragments()
    else:
        max_nbody = min(max_nbody, max_frag)

    # What levels do we need?
    nbody_range = range(1, max_nbody + 1)
    fragment_range = range(1, max_frag + 1)

    # Flip this off for now, needs more testing
    # If we are doing CP lets save them integrals
    #if 'cp' in bsse_type_list and (len(bsse_type_list) == 1):
    #    # Set to save RI integrals for repeated full-basis computations
    #    ri_ints_io = core.get_global_option('DF_INTS_IO')

    #    # inquire if above at all applies to dfmp2 or just scf
    #    core.set_global_option('DF_INTS_IO', 'SAVE')
    #    psioh = core.IOManager.shared_object()
    #    psioh.set_specific_retention(97, True)

    bsse_str = bsse_type_list[0]
    if len(bsse_type_list) > 1:
        bsse_str = str(bsse_type_list)
    core.print_out("\n\n")
    core.print_out("   ===> N-Body Interaction Abacus <===\n")
    core.print_out("        BSSE Treatment:                     %s\n" %
                   bsse_str)

    cp_compute_list = {x: set() for x in nbody_range}
    nocp_compute_list = {x: set() for x in nbody_range}
    vmfc_compute_list = {x: set() for x in nbody_range}
    vmfc_level_list = {x: set()
                       for x in nbody_range
                       }  # Need to sum something slightly different

    # Build up compute sets
    if do_cp:
        # Everything is in dimer basis
        basis_tuple = tuple(fragment_range)
        for nbody in nbody_range:
            for x in it.combinations(fragment_range, nbody):
                cp_compute_list[nbody].add((x, basis_tuple))

    if do_nocp:
        # Everything in monomer basis
        for nbody in nbody_range:
            for x in it.combinations(fragment_range, nbody):
                nocp_compute_list[nbody].add((x, x))

    if do_vmfc:
        # Like a CP for all combinations of pairs or greater
        for nbody in nbody_range:
            for cp_combos in it.combinations(fragment_range, nbody):
                basis_tuple = tuple(cp_combos)
                for interior_nbody in nbody_range:
                    for x in it.combinations(cp_combos, interior_nbody):
                        combo_tuple = (x, basis_tuple)
                        vmfc_compute_list[interior_nbody].add(combo_tuple)
                        vmfc_level_list[len(basis_tuple)].add(combo_tuple)

    # Build a comprehensive compute_range
    compute_list = {x: set() for x in nbody_range}
    for n in nbody_range:
        compute_list[n] |= cp_compute_list[n]
        compute_list[n] |= nocp_compute_list[n]
        compute_list[n] |= vmfc_compute_list[n]
        core.print_out("        Number of %d-body computations:     %d\n" %
                       (n, len(compute_list[n])))

    # Build size and slices dictionaries
    fragment_size_dict = {
        frag: molecule.extract_subsets(frag).natom()
        for frag in range(1, max_frag + 1)
    }

    start = 0
    fragment_slice_dict = {}
    for k, v in fragment_size_dict.items():
        fragment_slice_dict[k] = slice(start, start + v)
        start += v

    molecule_total_atoms = sum(fragment_size_dict.values())

    # Now compute the energies
    energies_dict = {}
    ptype_dict = {}
    for n in compute_list.keys():
        core.print_out(
            "\n   ==> N-Body: Now computing %d-body complexes <==\n\n" % n)
        print("\n   ==> N-Body: Now computing %d-body complexes <==\n" % n)
        total = len(compute_list[n])
        for num, pair in enumerate(compute_list[n]):
            core.print_out(
                "\n       N-Body: Computing complex (%d/%d) with fragments %s in the basis of fragments %s.\n\n"
                % (num + 1, total, str(pair[0]), str(pair[1])))
            ghost = list(set(pair[1]) - set(pair[0]))

            current_mol = molecule.extract_subsets(list(pair[0]), ghost)
            ptype_dict[pair] = func(method_string,
                                    molecule=current_mol,
                                    **kwargs)
            energies_dict[pair] = core.get_variable("CURRENT ENERGY")
            core.print_out(
                "\n       N-Body: Complex Energy (fragments = %s, basis = %s: %20.14f)\n"
                % (str(pair[0]), str(pair[1]), energies_dict[pair]))

            # Flip this off for now, needs more testing
            #if 'cp' in bsse_type_list and (len(bsse_type_list) == 1):
            #    core.set_global_option('DF_INTS_IO', 'LOAD')

            core.clean()

    # Final dictionaries
    cp_energy_by_level = {n: 0.0 for n in nbody_range}
    nocp_energy_by_level = {n: 0.0 for n in nbody_range}

    cp_energy_body_dict = {n: 0.0 for n in nbody_range}
    nocp_energy_body_dict = {n: 0.0 for n in nbody_range}
    vmfc_energy_body_dict = {n: 0.0 for n in nbody_range}

    # Build out ptype dictionaries if needed
    if ptype != 'energy':
        if ptype == 'gradient':
            arr_shape = (molecule_total_atoms, 3)
        elif ptype == 'hessian':
            arr_shape = (molecule_total_atoms * 3, molecule_total_atoms * 3)
        else:
            raise KeyError("N-Body: ptype '%s' not recognized" % ptype)

        cp_ptype_by_level = {n: np.zeros(arr_shape) for n in nbody_range}
        nocp_ptype_by_level = {n: np.zeros(arr_shape) for n in nbody_range}
        vmfc_ptype_by_level = {n: np.zeros(arr_shape) for n in nbody_range}

        cp_ptype_body_dict = {n: np.zeros(arr_shape) for n in nbody_range}
        nocp_ptype_body_dict = {n: np.zeros(arr_shape) for n in nbody_range}
        vmfc_ptype_body_dict = {n: np.zeros(arr_shape) for n in nbody_range}
    else:
        cp_ptype_by_level, cp_ptype_body_dict = None, None
        nocp_ptype_by_level, nocp_ptype_body_dict = None, None
        vmfc_ptype_body_dict = None

    # Sum up all of the levels
    for n in nbody_range:

        # Energy
        cp_energy_by_level[n] = sum(energies_dict[v]
                                    for v in cp_compute_list[n])
        nocp_energy_by_level[n] = sum(energies_dict[v]
                                      for v in nocp_compute_list[n])

        # Special vmfc case
        if n > 1:
            vmfc_energy_body_dict[n] = vmfc_energy_body_dict[n - 1]
        for tup in vmfc_level_list[n]:
            vmfc_energy_body_dict[n] += (
                (-1)**(n - len(tup[0]))) * energies_dict[tup]

        # Do ptype
        if ptype != 'energy':
            _sum_cluster_ptype_data(ptype, ptype_dict, cp_compute_list[n],
                                    fragment_slice_dict, fragment_size_dict,
                                    cp_ptype_by_level[n])
            _sum_cluster_ptype_data(ptype, ptype_dict, nocp_compute_list[n],
                                    fragment_slice_dict, fragment_size_dict,
                                    nocp_ptype_by_level[n])
            _sum_cluster_ptype_data(ptype,
                                    ptype_dict,
                                    vmfc_level_list[n],
                                    fragment_slice_dict,
                                    fragment_size_dict,
                                    vmfc_ptype_by_level[n],
                                    vmfc=True)

    # Compute cp energy and ptype
    if do_cp:
        for n in nbody_range:
            if n == max_frag:
                cp_energy_body_dict[n] = cp_energy_by_level[n]
                if ptype != 'energy':
                    cp_ptype_body_dict[n][:] = cp_ptype_by_level[n]
                continue

            for k in range(1, n + 1):
                take_nk = nCr(max_frag - k - 1, n - k)
                sign = ((-1)**(n - k))
                value = cp_energy_by_level[k]
                cp_energy_body_dict[n] += take_nk * sign * value

                if ptype != 'energy':
                    value = cp_ptype_by_level[k]
                    cp_ptype_body_dict[n] += take_nk * sign * value

        _print_nbody_energy(cp_energy_body_dict, "Counterpoise Corrected (CP)")
        cp_interaction_energy = cp_energy_body_dict[
            max_nbody] - cp_energy_body_dict[1]
        core.set_variable('Counterpoise Corrected Total Energy',
                          cp_energy_body_dict[max_nbody])
        core.set_variable('Counterpoise Corrected Interaction Energy',
                          cp_interaction_energy)

        for n in nbody_range[1:]:
            var_key = 'CP-CORRECTED %d-BODY INTERACTION ENERGY' % n
            core.set_variable(var_key,
                              cp_energy_body_dict[n] - cp_energy_body_dict[1])

    # Compute nocp energy and ptype
    if do_nocp:
        for n in nbody_range:
            if n == max_frag:
                nocp_energy_body_dict[n] = nocp_energy_by_level[n]
                if ptype != 'energy':
                    nocp_ptype_body_dict[n][:] = nocp_ptype_by_level[n]
                continue

            for k in range(1, n + 1):
                take_nk = nCr(max_frag - k - 1, n - k)
                sign = ((-1)**(n - k))
                value = nocp_energy_by_level[k]
                nocp_energy_body_dict[n] += take_nk * sign * value

                if ptype != 'energy':
                    value = nocp_ptype_by_level[k]
                    nocp_ptype_body_dict[n] += take_nk * sign * value

        _print_nbody_energy(nocp_energy_body_dict,
                            "Non-Counterpoise Corrected (NoCP)")
        nocp_interaction_energy = nocp_energy_body_dict[
            max_nbody] - nocp_energy_body_dict[1]
        core.set_variable('Non-Counterpoise Corrected Total Energy',
                          nocp_energy_body_dict[max_nbody])
        core.set_variable('Non-Counterpoise Corrected Interaction Energy',
                          nocp_interaction_energy)

        for n in nbody_range[1:]:
            var_key = 'NOCP-CORRECTED %d-BODY INTERACTION ENERGY' % n
            core.set_variable(
                var_key, nocp_energy_body_dict[n] - nocp_energy_body_dict[1])

    # Compute vmfc energy and ptype
    if do_vmfc:
        _print_nbody_energy(vmfc_energy_body_dict,
                            "Valiron-Mayer Function Couterpoise (VMFC)")
        vmfc_interaction_energy = vmfc_energy_body_dict[
            max_nbody] - vmfc_energy_body_dict[1]
        core.set_variable('Valiron-Mayer Function Couterpoise Total Energy',
                          vmfc_energy_body_dict[max_nbody])
        core.set_variable(
            'Valiron-Mayer Function Couterpoise Interaction Energy',
            vmfc_interaction_energy)

        for n in nbody_range[1:]:
            var_key = 'VMFC-CORRECTED %d-BODY INTERACTION ENERGY' % n
            core.set_variable(
                var_key, vmfc_energy_body_dict[n] - vmfc_energy_body_dict[1])

    if return_method == 'cp':
        ptype_body_dict = cp_ptype_body_dict
        energy_body_dict = cp_energy_body_dict
    elif return_method == 'nocp':
        ptype_body_dict = nocp_ptype_body_dict
        energy_body_dict = nocp_energy_body_dict
    elif return_method == 'vmfc':
        ptype_body_dict = vmfc_ptype_body_dict
        energy_body_dict = vmfc_energy_body_dict
    else:
        raise ValidationError(
            "N-Body Wrapper: Invalid return type. Should never be here, please post this error on github."
        )

    # Figure out and build return types
    if return_total_data:
        ret_energy = energy_body_dict[max_nbody]
    else:
        ret_energy = energy_body_dict[max_nbody]
        ret_energy -= energy_body_dict[1]

    if ptype != 'energy':
        if return_total_data:
            np_final_ptype = ptype_body_dict[max_nbody].copy()
        else:
            np_final_ptype = ptype_body_dict[max_nbody].copy()
            np_final_ptype -= ptype_body_dict[1]

            ret_ptype = core.Matrix.from_array(np_final_ptype)
    else:
        ret_ptype = ret_energy

    # Build and set a wavefunction
    wfn = core.Wavefunction.build(molecule, 'sto-3g')
    wfn.cdict["nbody_energy"] = energies_dict
    wfn.cdict["nbody_ptype"] = ptype_dict
    wfn.cdict["nbody_body_energy"] = energy_body_dict
    wfn.cdict["nbody_body_ptype"] = ptype_body_dict

    if ptype == 'gradient':
        wfn.set_gradient(ret_ptype)
    elif ptype == 'hessian':
        wfn.set_hessian(ret_ptype)

    core.set_variable("CURRENT ENERGY", ret_energy)

    if return_wfn:
        return (ret_ptype, wfn)
    else:
        return ret_ptype
Esempio n. 14
0
def multi_level(func, **kwargs):
    """
    Use different levels of theory for different expansion levels
    See kwargs description in driver_nbody.nbody_gufunc

    :returns: *return type of func* |w--w| The data.

    :returns: (*float*, :py:class:`~psi4.core.Wavefunction`) |w--w| data and wavefunction with energy/gradient/hessian set appropriately when **return_wfn** specified.

    """
    from psi4.driver.driver_nbody import nbody_gufunc
    from psi4.driver.driver_nbody import _print_nbody_energy

    ptype = kwargs['ptype']
    return_wfn = kwargs.get('return_wfn', False)
    kwargs['return_wfn'] = True
    levels = kwargs.pop('levels')
    for i in levels:
        if isinstance(i, str): levels[i.lower()] = levels.pop(i)
    supersystem = levels.pop('supersystem', False)
    molecule = kwargs.get('molecule', core.get_active_molecule())
    kwargs['bsse_type'] = [kwargs['bsse_type']] if isinstance(kwargs['bsse_type'], str) else kwargs['bsse_type']
    natoms = molecule.natom()

    # Initialize with zeros
    energy_result, gradient_result, hessian_result = 0, None, None
    energy_body_contribution = {b: {} for b in kwargs['bsse_type']}
    energy_body_dict = {b: {} for b in kwargs['bsse_type']}
    wfns = {}
    if ptype in ['gradient', 'hessian']:
        gradient_result = np.zeros((natoms, 3))
    if ptype == 'hessian':
        hessian_result = np.zeros((natoms * 3, natoms * 3))

    if kwargs.get('charge_method', False) and not kwargs.get('embedding_charges', False):
        kwargs['embedding_charges'] = compute_charges(kwargs['charge_method'],
                                      kwargs.get('charge_type', 'MULLIKEN_CHARGES').upper(), molecule)

    for n in sorted(levels)[::-1]:
        molecule.set_name('%i' %n)
        kwargs_copy = kwargs.copy()
        kwargs_copy['max_nbody'] = n
        energy_bsse_dict = {b: 0 for b in kwargs['bsse_type']}
        if isinstance(levels[n], str):
            # If a new level of theory is provided, compute contribution
            ret, wfn = nbody_gufunc(func, levels[n], **kwargs_copy)
            wfns[n] = wfn
        else:
            # For the n-body contribution, use available data from the higher order levels[n]-body
            wfn = wfns[levels[n]]

        for m in range(n - 1, n + 1):
            if m == 0: continue
            # Subtract the (n-1)-body contribution from the n-body contribution to get the n-body effect
            sign = (-1)**(1 - m // n)
            for b in kwargs['bsse_type']:
                energy_bsse_dict[b] += sign * wfn.variable('%i%s' % (m, b.lower()))
            if ptype in ['gradient', 'hessian']:
                gradient_result += sign * np.array(wfn.variable('GRADIENT ' + str(m)))
                # Keep 1-body contribution to compute interaction data
                if n == 1:
                    gradient1 = np.array(wfn.variable('GRADIENT ' + str(m)))
            if ptype == 'hessian':
                hessian_result += sign * np.array(wfn.variable('HESSIAN ' + str(m)))
                if n == 1:
                    hessian1 = np.array(wfn.variable('HESSIAN ' + str(m)))
        energy_result += energy_bsse_dict[kwargs['bsse_type'][0]]
        for b in kwargs['bsse_type']:
            energy_body_contribution[b][n] = energy_bsse_dict[b]

    if supersystem:
        # Super system recovers higher order effects at a lower level
        molecule.set_name('supersystem')
        kwargs_copy = kwargs.copy()
        kwargs_copy.pop('bsse_type')
        kwargs_copy.pop('ptype')
        ret, wfn_super = func(supersystem, **kwargs_copy)
        core.clean()
        kwargs_copy = kwargs.copy()
        kwargs_copy['bsse_type'] = 'nocp'
        kwargs_copy['max_nbody'] = max(levels)
        # Subtract lower order effects to avoid double counting
        ret, wfn = nbody_gufunc(func, supersystem, **kwargs_copy)
        energy_result += wfn_super.energy() - wfn.variable(str(max(levels)))
        for b in kwargs['bsse_type']:
            energy_body_contribution[b][molecule.nfragments()] = wfn_super.energy() - wfn.variable(
                str(max(levels)))

        if ptype in ['gradient', 'hessian']:
            gradient_result += np.array(wfn_super.gradient()) - np.array(wfn.variable('GRADIENT ' + str(max(levels))))
        if ptype == 'hessian':
            hessian_result += np.array(wfn_super.hessian()) - np.array(wfn.variable('HESSIAN ' + str(max(levels))))
        levels['supersystem'] = supersystem

    for b in kwargs['bsse_type']:
        for n in energy_body_contribution[b]:
            energy_body_dict[b][n] = sum(
                [energy_body_contribution[b][i] for i in range(1, n + 1) if i in energy_body_contribution[b]])

    is_embedded = kwargs.get('embedding_charges', False) or kwargs.get('charge_method', False)
    for b in kwargs['bsse_type']:
        _print_nbody_energy(energy_body_dict[b], '%s-corrected multilevel many-body expansion' % b.upper(),
                            is_embedded)

    if not kwargs['return_total_data']:
        # Remove monomer cotribution for interaction data
        energy_result -= energy_body_dict[kwargs['bsse_type'][0]][1]
        if ptype in ['gradient', 'hessian']:
            gradient_result -= gradient1
        if ptype == 'hessian':
            hessian_result -= hessian1
    wfn_out = core.Wavefunction.build(molecule, 'def2-svp')
    core.set_variable("CURRENT ENERGY", energy_result)
    wfn_out.set_variable("CURRENT ENERGY", energy_result)
    gradient_result = core.Matrix.from_array(gradient_result) if gradient_result is not None else None
    wfn_out.set_gradient(gradient_result)
    hessian_result = core.Matrix.from_array(hessian_result) if hessian_result is not None else None
    wfn_out.set_hessian(hessian_result)
    ptype_result = eval(ptype + '_result')
    for b in kwargs['bsse_type']:
        for i in energy_body_dict[b]:
            wfn_out.set_variable(str(i) + b, energy_body_dict[b][i])

    if kwargs['return_wfn']:
        return (ptype_result, wfn_out)
    else:
        return ptype_result
Esempio n. 15
0
def run_gaussian_2(name, **kwargs):

    # throw an exception for open-shells
    if (core.get_option('SCF','REFERENCE') != 'RHF' ):
        raise ValidationError("""g2 computations require "reference rhf".""")

    # stash user options:
    optstash = p4util.OptionsState(
        ['FNOCC','COMPUTE_TRIPLES'],
        ['FNOCC','COMPUTE_MP4_TRIPLES'],
        ['FREEZE_CORE'],
        ['MP2_TYPE'],
        ['SCF','SCF_TYPE'])

    # override default scf_type
    core.set_local_option('SCF','SCF_TYPE','PK')

    # optimize geometry at scf level
    core.clean()
    core.set_global_option('BASIS',"6-31G(D)")
    driver.optimize('scf')
    core.clean()

    # scf frequencies for zpe
    # NOTE This line should not be needed, but without it there's a seg fault
    scf_e, ref = driver.frequency('scf', return_wfn=True)

    # thermodynamic properties
    du = core.get_variable('INTERNAL ENERGY CORRECTION')
    dh = core.get_variable('ENTHALPY CORRECTION')
    dg = core.get_variable('GIBBS FREE ENERGY CORRECTION')

    freqs   = ref.frequencies()
    nfreq   = freqs.dim(0)
    freqsum = 0.0
    for i in range(0, nfreq):
        freqsum += freqs.get(i)
    zpe = freqsum / p4const.psi_hartree2wavenumbers * 0.8929 * 0.5
    core.clean()

    # optimize geometry at mp2 (no frozen core) level
    # note: freeze_core isn't an option in MP2
    core.set_global_option('FREEZE_CORE',"FALSE")
    core.set_global_option('MP2_TYPE', 'CONV')
    driver.optimize('mp2')
    core.clean()

    # qcisd(t)
    core.set_local_option('FNOCC','COMPUTE_MP4_TRIPLES',"TRUE")
    core.set_global_option('FREEZE_CORE',"TRUE")
    core.set_global_option('BASIS',"6-311G(D_P)")
    ref = driver.proc.run_fnocc('qcisd(t)', return_wfn=True, **kwargs)

    # HLC: high-level correction based on number of valence electrons
    nirrep = ref.nirrep()
    frzcpi = ref.frzcpi()
    nfzc = 0
    for i in range (0,nirrep):
        nfzc += frzcpi[i]
    nalpha = ref.nalpha() - nfzc
    nbeta  = ref.nbeta() - nfzc
    # hlc of gaussian-2
    hlc = -0.00481 * nalpha -0.00019 * nbeta
    # hlc of gaussian-1
    hlc1 = -0.00614 * nalpha

    eqci_6311gdp = core.get_variable("QCISD(T) TOTAL ENERGY")
    emp4_6311gd  = core.get_variable("MP4 TOTAL ENERGY")
    emp2_6311gd  = core.get_variable("MP2 TOTAL ENERGY")
    core.clean()

    # correction for diffuse functions
    core.set_global_option('BASIS',"6-311+G(D_P)")
    driver.energy('mp4')
    emp4_6311pg_dp = core.get_variable("MP4 TOTAL ENERGY")
    emp2_6311pg_dp = core.get_variable("MP2 TOTAL ENERGY")
    core.clean()

    # correction for polarization functions
    core.set_global_option('BASIS',"6-311G(2DF_P)")
    driver.energy('mp4')
    emp4_6311g2dfp = core.get_variable("MP4 TOTAL ENERGY")
    emp2_6311g2dfp = core.get_variable("MP2 TOTAL ENERGY")
    core.clean()

    # big basis mp2
    core.set_global_option('BASIS',"6-311+G(3DF_2P)")
    #run_fnocc('_mp2',**kwargs)
    driver.energy('mp2')
    emp2_big = core.get_variable("MP2 TOTAL ENERGY")
    core.clean()
    eqci       = eqci_6311gdp
    e_delta_g2 = emp2_big + emp2_6311gd - emp2_6311g2dfp - emp2_6311pg_dp
    e_plus     = emp4_6311pg_dp - emp4_6311gd
    e_2df      = emp4_6311g2dfp - emp4_6311gd

    eg2 = eqci + e_delta_g2 + e_plus + e_2df
    eg2_mp2_0k = eqci + (emp2_big - emp2_6311gd) + hlc + zpe

    core.print_out('\n')
    core.print_out('  ==>  G1/G2 Energy Components  <==\n')
    core.print_out('\n')
    core.print_out('        QCISD(T):            %20.12lf\n' % eqci)
    core.print_out('        E(Delta):            %20.12lf\n' % e_delta_g2)
    core.print_out('        E(2DF):              %20.12lf\n' % e_2df)
    core.print_out('        E(+):                %20.12lf\n' % e_plus)
    core.print_out('        E(G1 HLC):           %20.12lf\n' % hlc1)
    core.print_out('        E(G2 HLC):           %20.12lf\n' % hlc)
    core.print_out('        E(ZPE):              %20.12lf\n' % zpe)
    core.print_out('\n')
    core.print_out('  ==>  0 Kelvin Results  <==\n')
    core.print_out('\n')
    eg2_0k = eg2 + zpe + hlc
    core.print_out('        G1:                  %20.12lf\n' % (eqci + e_plus + e_2df + hlc1 + zpe))
    core.print_out('        G2(MP2):             %20.12lf\n' % eg2_mp2_0k)
    core.print_out('        G2:                  %20.12lf\n' % eg2_0k)

    core.set_variable("G1 TOTAL ENERGY",eqci + e_plus + e_2df + hlc1 + zpe)
    core.set_variable("G2 TOTAL ENERGY",eg2_0k)
    core.set_variable("G2(MP2) TOTAL ENERGY",eg2_mp2_0k)

    core.print_out('\n')
    T = core.get_global_option('T')
    core.print_out('  ==>  %3.0lf Kelvin Results  <==\n'% T)
    core.print_out('\n')

    internal_energy = eg2_mp2_0k + du - zpe / 0.8929
    enthalpy        = eg2_mp2_0k + dh - zpe / 0.8929
    gibbs           = eg2_mp2_0k + dg - zpe / 0.8929

    core.print_out('        G2(MP2) energy:      %20.12lf\n' % internal_energy )
    core.print_out('        G2(MP2) enthalpy:    %20.12lf\n' % enthalpy)
    core.print_out('        G2(MP2) free energy: %20.12lf\n' % gibbs)
    core.print_out('\n')

    core.set_variable("G2(MP2) INTERNAL ENERGY",internal_energy)
    core.set_variable("G2(MP2) ENTHALPY",enthalpy)
    core.set_variable("G2(MP2) FREE ENERGY",gibbs)

    internal_energy = eg2_0k + du - zpe / 0.8929
    enthalpy        = eg2_0k + dh - zpe / 0.8929
    gibbs           = eg2_0k + dg - zpe / 0.8929

    core.print_out('        G2 energy:           %20.12lf\n' % internal_energy )
    core.print_out('        G2 enthalpy:         %20.12lf\n' % enthalpy)
    core.print_out('        G2 free energy:      %20.12lf\n' % gibbs)

    core.set_variable("CURRENT ENERGY",eg2_0k)

    core.set_variable("G2 INTERNAL ENERGY",internal_energy)
    core.set_variable("G2 ENTHALPY",enthalpy)
    core.set_variable("G2 FREE ENERGY",gibbs)

    core.clean()

    optstash.restore()

    # return 0K g2 results
    return eg2_0k
Esempio n. 16
0
def multi_level(func, **kwargs):
    """
    Use different levels of theory for different expansion levels
    See kwargs description in driver_nbody.nbody_gufunc

    :returns: *return type of func* |w--w| The data.

    :returns: (*float*, :py:class:`~psi4.core.Wavefunction`) |w--w| data and wavefunction with energy/gradient/hessian set appropriately when **return_wfn** specified.

    """
    from psi4.driver.driver_nbody import _print_nbody_energy, nbody_gufunc

    ptype = kwargs['ptype']
    return_wfn = kwargs.get('return_wfn', False)
    kwargs['return_wfn'] = True
    levels = {}
    for k, v in kwargs.pop('levels').items():
        if isinstance(k, str):
            levels[k.lower()] = v
        else:
            levels[k] = v
    supersystem = levels.pop('supersystem', False)
    molecule = kwargs.get('molecule', core.get_active_molecule())
    kwargs['bsse_type'] = [kwargs['bsse_type']] if isinstance(kwargs['bsse_type'], str) else kwargs['bsse_type']
    natoms = molecule.natom()

    # Initialize with zeros
    energy_result, gradient_result, hessian_result = 0, None, None
    energy_body_contribution = {b: {} for b in kwargs['bsse_type']}
    energy_body_dict = {b: {} for b in kwargs['bsse_type']}
    wfns = {}
    if ptype in ['gradient', 'hessian']:
        gradient_result = np.zeros((natoms, 3))
    if ptype == 'hessian':
        hessian_result = np.zeros((natoms * 3, natoms * 3))

    if kwargs.get('charge_method', False) and not kwargs.get('embedding_charges', False):
        kwargs['embedding_charges'] = compute_charges(kwargs['charge_method'],
                                      kwargs.get('charge_type', 'MULLIKEN_CHARGES').upper(), molecule)

    for n in sorted(levels)[::-1]:
        molecule.set_name('%i' % n)
        kwargs_copy = kwargs.copy()
        kwargs_copy['max_nbody'] = n
        energy_bsse_dict = {b: 0 for b in kwargs['bsse_type']}
        if isinstance(levels[n], str):
            # If a new level of theory is provided, compute contribution
            ret, wfn = nbody_gufunc(func, levels[n], **kwargs_copy)
            wfns[n] = wfn
        else:
            # For the n-body contribution, use available data from the higher order levels[n]-body
            wfn = wfns[levels[n]]

        for m in range(n - 1, n + 1):
            if m == 0: continue
            # Subtract the (n-1)-body contribution from the n-body contribution to get the n-body effect
            sign = (-1)**(1 - m // n)
            for b in kwargs['bsse_type']:
                energy_bsse_dict[b] += sign * wfn.variable('%i%s' % (m, b.lower()))
            if ptype in ['gradient', 'hessian']:
                gradient_result += sign * np.array(wfn.variable('GRADIENT ' + str(m)))
                # Keep 1-body contribution to compute interaction data
                if n == 1:
                    gradient1 = np.array(wfn.variable('GRADIENT ' + str(m)))
            if ptype == 'hessian':
                hessian_result += sign * np.array(wfn.variable('HESSIAN ' + str(m)))
                if n == 1:
                    hessian1 = np.array(wfn.variable('HESSIAN ' + str(m)))
        energy_result += energy_bsse_dict[kwargs['bsse_type'][0]]
        for b in kwargs['bsse_type']:
            energy_body_contribution[b][n] = energy_bsse_dict[b]

    if supersystem:
        # Super system recovers higher order effects at a lower level
        molecule.set_name('supersystem')
        kwargs_copy = kwargs.copy()
        kwargs_copy.pop('bsse_type')
        kwargs_copy.pop('ptype')
        ret, wfn_super = func(supersystem, **kwargs_copy)
        core.clean()
        kwargs_copy = kwargs.copy()
        kwargs_copy['bsse_type'] = 'nocp'
        kwargs_copy['max_nbody'] = max(levels)
        # Subtract lower order effects to avoid double counting
        ret, wfn = nbody_gufunc(func, supersystem, **kwargs_copy)
        energy_result += wfn_super.energy() - wfn.variable(str(max(levels)))
        for b in kwargs['bsse_type']:
            energy_body_contribution[b][molecule.nfragments()] = wfn_super.energy() - wfn.variable(
                str(max(levels)))

        if ptype in ['gradient', 'hessian']:
            gradient_result += np.array(wfn_super.gradient()) - np.array(wfn.variable('GRADIENT ' + str(max(levels))))
        if ptype == 'hessian':
            hessian_result += np.array(wfn_super.hessian()) - np.array(wfn.variable('HESSIAN ' + str(max(levels))))
        levels['supersystem'] = supersystem

    for b in kwargs['bsse_type']:
        for n in energy_body_contribution[b]:
            energy_body_dict[b][n] = sum(
                [energy_body_contribution[b][i] for i in range(1, n + 1) if i in energy_body_contribution[b]])

    is_embedded = kwargs.get('embedding_charges', False) or kwargs.get('charge_method', False)
    for b in kwargs['bsse_type']:
        _print_nbody_energy(energy_body_dict[b], '%s-corrected multilevel many-body expansion' % b.upper(),
                            is_embedded)

    if not kwargs['return_total_data']:
        # Remove monomer contribution for interaction data
        energy_result -= energy_body_dict[kwargs['bsse_type'][0]][1]
        if ptype in ['gradient', 'hessian']:
            gradient_result -= gradient1
        if ptype == 'hessian':
            hessian_result -= hessian1
    wfn_out = core.Wavefunction.build(molecule, 'def2-svp')
    core.set_variable("CURRENT ENERGY", energy_result)
    wfn_out.set_variable("CURRENT ENERGY", energy_result)
    if gradient_result is not None:
        wfn_out.set_gradient(core.Matrix.from_array(gradient_result))
    if hessian_result is not None:
        wfn_out.set_hessian(core.Matrix.from_array(hessian_result) )
    ptype_result = eval(ptype + '_result')
    for b in kwargs['bsse_type']:
        for i in energy_body_dict[b]:
            wfn_out.set_variable(str(i) + b, energy_body_dict[b][i])

    if kwargs['return_wfn']:
        return (ptype_result, wfn_out)
    else:
        return ptype_result
Esempio n. 17
0
def nbody_gufunc(func, method_string, **kwargs):
    """
    Computes the nbody interaction energy, gradient, or Hessian depending on input.
    This is a generalized univeral function for computing interaction quantities.

    :returns: *return type of func* |w--w| The interaction data.

    :returns: (*float*, :py:class:`~psi4.core.Wavefunction`) |w--w| interaction data and wavefunction with energy/gradient/hessian set appropriately when **return_wfn** specified.

    :type func: function
    :param func: ``energy`` || etc.

        Python function that accepts method_string and a molecule. Returns a
        energy, gradient, or Hessian as requested.

    :type method_string: string
    :param method_string: ``'scf'`` || ``'mp2'`` || ``'ci5'`` || etc.

        First argument, lowercase and usually unlabeled. Indicates the computational
        method to be passed to func.

    :type molecule: :ref:`molecule <op_py_molecule>`
    :param molecule: ``h2o`` || etc.

        The target molecule, if not the last molecule defined.

    :type return_wfn: :ref:`boolean <op_py_boolean>`
    :param return_wfn: ``'on'`` || |dl| ``'off'`` |dr|

        Indicate to additionally return the :py:class:`~psi4.core.Wavefunction`
        calculation result as the second element of a tuple.

    :type bsse_type: string or list
    :param bsse_type: ``'cp'`` || ``['nocp', 'vmfc']`` || |dl| ``None`` |dr| || etc.

        Type of BSSE correction to compute: CP, NoCP, or VMFC. The first in this
        list is returned by this function. By default, this function is not called.

    :type max_nbody: int
    :param max_nbody: ``3`` || etc.

        Maximum n-body to compute, cannot exceed the number of fragments in the moleucle.

    :type ptype: string
    :param ptype: ``'energy'`` || ``'gradient'`` || ``'hessian'``

        Type of the procedure passed in.

    :type return_total_data: :ref:`boolean <op_py_boolean>`
    :param return_total_data: ``'on'`` || |dl| ``'off'`` |dr|

        If True returns the total data (energy/gradient/etc) of the system,
        otherwise returns interaction data.
    """

    ### ==> Parse some kwargs <==
    kwargs = p4util.kwargs_lower(kwargs)
    return_wfn = kwargs.pop('return_wfn', False)
    ptype = kwargs.pop('ptype', None)
    return_total_data = kwargs.pop('return_total_data', False)
    molecule = kwargs.pop('molecule', core.get_active_molecule())
    molecule.update_geometry()
    core.clean_variables()

    if ptype not in ['energy', 'gradient', 'hessian']:
        raise ValidationError("""N-Body driver: The ptype '%s' is not regonized.""" % ptype)

    # Figure out BSSE types
    do_cp = False
    do_nocp = False
    do_vmfc = False
    return_method = False

    # Must be passed bsse_type
    bsse_type_list = kwargs.pop('bsse_type')
    if bsse_type_list is None:
        raise ValidationError("N-Body GUFunc: Must pass a bsse_type")
    if not isinstance(bsse_type_list, list):
        bsse_type_list = [bsse_type_list]

    for num, btype in enumerate(bsse_type_list):
        if btype.lower() == 'cp':
            do_cp = True
            if (num == 0): return_method = 'cp'
        elif btype.lower() == 'nocp':
            do_nocp = True
            if (num == 0): return_method = 'nocp'
        elif btype.lower() == 'vmfc':
            do_vmfc = True
            if (num == 0): return_method = 'vmfc'
        else:
            raise ValidationError("N-Body GUFunc: bsse_type '%s' is not recognized" % btype.lower())

    max_nbody = kwargs.get('max_nbody', -1)
    max_frag = molecule.nfragments()
    if max_nbody == -1:
        max_nbody = molecule.nfragments()
    else:
        max_nbody = min(max_nbody, max_frag)

    # What levels do we need?
    nbody_range = range(1, max_nbody + 1)
    fragment_range = range(1, max_frag + 1)

    # Flip this off for now, needs more testing
    # If we are doing CP lets save them integrals
    #if 'cp' in bsse_type_list and (len(bsse_type_list) == 1):
    #    # Set to save RI integrals for repeated full-basis computations
    #    ri_ints_io = core.get_global_option('DF_INTS_IO')

    #    # inquire if above at all applies to dfmp2 or just scf
    #    core.set_global_option('DF_INTS_IO', 'SAVE')
    #    psioh = core.IOManager.shared_object()
    #    psioh.set_specific_retention(97, True)


    bsse_str = bsse_type_list[0]
    if len(bsse_type_list) >1:
        bsse_str =  str(bsse_type_list)
    core.print_out("\n\n")
    core.print_out("   ===> N-Body Interaction Abacus <===\n")
    core.print_out("        BSSE Treatment:                     %s\n" % bsse_str)


    cp_compute_list = {x:set() for x in nbody_range}
    nocp_compute_list = {x:set() for x in nbody_range}
    vmfc_compute_list = {x:set() for x in nbody_range}
    vmfc_level_list = {x:set() for x in nbody_range} # Need to sum something slightly different

    # Build up compute sets
    if do_cp:
        # Everything is in dimer basis
        basis_tuple = tuple(fragment_range)
        for nbody in nbody_range:
            for x in it.combinations(fragment_range, nbody):
                cp_compute_list[nbody].add( (x, basis_tuple) )

    if do_nocp:
        # Everything in monomer basis
        for nbody in nbody_range:
            for x in it.combinations(fragment_range, nbody):
                nocp_compute_list[nbody].add( (x, x) )

    if do_vmfc:
        # Like a CP for all combinations of pairs or greater
        for nbody in nbody_range:
            for cp_combos in it.combinations(fragment_range, nbody):
                basis_tuple = tuple(cp_combos)
                for interior_nbody in nbody_range:
                    for x in it.combinations(cp_combos, interior_nbody):
                        combo_tuple = (x, basis_tuple)
                        vmfc_compute_list[interior_nbody].add( combo_tuple )
                        vmfc_level_list[len(basis_tuple)].add( combo_tuple )

    # Build a comprehensive compute_range
    compute_list = {x:set() for x in nbody_range}
    for n in nbody_range:
        compute_list[n] |= cp_compute_list[n]
        compute_list[n] |= nocp_compute_list[n]
        compute_list[n] |= vmfc_compute_list[n]
        core.print_out("        Number of %d-body computations:     %d\n" % (n, len(compute_list[n])))


    # Build size and slices dictionaries
    fragment_size_dict = {frag: molecule.extract_subsets(frag).natom() for
                                           frag in range(1, max_frag+1)}

    start = 0
    fragment_slice_dict = {}
    for k, v in fragment_size_dict.items():
        fragment_slice_dict[k] = slice(start, start + v)
        start += v

    molecule_total_atoms = sum(fragment_size_dict.values())

    # Now compute the energies
    energies_dict = {}
    ptype_dict = {}
    for n in compute_list.keys():
        core.print_out("\n   ==> N-Body: Now computing %d-body complexes <==\n\n" % n)
        total = len(compute_list[n])
        for num, pair in enumerate(compute_list[n]):
            core.print_out("\n       N-Body: Computing complex (%d/%d) with fragments %s in the basis of fragments %s.\n\n" %
                                                                    (num + 1, total, str(pair[0]), str(pair[1])))
            ghost = list(set(pair[1]) - set(pair[0]))

            current_mol = molecule.extract_subsets(list(pair[0]), ghost)
            ptype_dict[pair] = func(method_string, molecule=current_mol, **kwargs)
            energies_dict[pair] = core.get_variable("CURRENT ENERGY")
            core.print_out("\n       N-Body: Complex Energy (fragments = %s, basis = %s: %20.14f)\n" %
                                                                (str(pair[0]), str(pair[1]), energies_dict[pair]))

            # Flip this off for now, needs more testing
            #if 'cp' in bsse_type_list and (len(bsse_type_list) == 1):
            #    core.set_global_option('DF_INTS_IO', 'LOAD')

            core.clean()

    # Final dictionaries
    cp_energy_by_level   = {n: 0.0 for n in nbody_range}
    nocp_energy_by_level = {n: 0.0 for n in nbody_range}

    cp_energy_body_dict =   {n: 0.0 for n in nbody_range}
    nocp_energy_body_dict = {n: 0.0 for n in nbody_range}
    vmfc_energy_body_dict = {n: 0.0 for n in nbody_range}

    # Build out ptype dictionaries if needed
    if ptype != 'energy':
        if ptype == 'gradient':
            arr_shape = (molecule_total_atoms, 3)
        elif ptype == 'hessian':
            arr_shape = (molecule_total_atoms * 3, molecule_total_atoms * 3)
        else:
            raise KeyError("N-Body: ptype '%s' not recognized" % ptype)

        cp_ptype_by_level   =  {n: np.zeros(arr_shape) for n in nbody_range}
        nocp_ptype_by_level =  {n: np.zeros(arr_shape) for n in nbody_range}
        vmfc_ptype_by_level = {n: np.zeros(arr_shape) for n in nbody_range}

        cp_ptype_body_dict   = {n: np.zeros(arr_shape) for n in nbody_range}
        nocp_ptype_body_dict = {n: np.zeros(arr_shape) for n in nbody_range}
        vmfc_ptype_body_dict = {n: np.zeros(arr_shape) for n in nbody_range}
    else:
        cp_ptype_by_level, cp_ptype_body_dict = None, None
        nocp_ptype_by_level, nocp_ptype_body_dict = None, None
        vmfc_ptype_body_dict = None


    # Sum up all of the levels
    for n in nbody_range:

        # Energy
        cp_energy_by_level[n]   = sum(energies_dict[v] for v in cp_compute_list[n])
        nocp_energy_by_level[n] = sum(energies_dict[v] for v in nocp_compute_list[n])

        # Special vmfc case
        if n > 1:
            vmfc_energy_body_dict[n] = vmfc_energy_body_dict[n - 1]
        for tup in vmfc_level_list[n]:
            vmfc_energy_body_dict[n] += ((-1) ** (n - len(tup[0]))) * energies_dict[tup]


        # Do ptype
        if ptype != 'energy':
            _sum_cluster_ptype_data(ptype, ptype_dict, cp_compute_list[n],
                                      fragment_slice_dict, fragment_size_dict,
                                      cp_ptype_by_level[n])
            _sum_cluster_ptype_data(ptype, ptype_dict, nocp_compute_list[n],
                                      fragment_slice_dict, fragment_size_dict,
                                      nocp_ptype_by_level[n])
            _sum_cluster_ptype_data(ptype, ptype_dict, vmfc_level_list[n],
                                      fragment_slice_dict, fragment_size_dict,
                                      vmfc_ptype_by_level[n], vmfc=True)

    # Compute cp energy and ptype
    if do_cp:
        for n in nbody_range:
            if n == max_frag:
                cp_energy_body_dict[n] = cp_energy_by_level[n]
                if ptype != 'energy':
                    cp_ptype_body_dict[n][:] = cp_ptype_by_level[n]
                continue

            for k in range(1, n + 1):
                take_nk =  nCr(max_frag - k - 1, n - k)
                sign = ((-1) ** (n - k))
                value = cp_energy_by_level[k]
                cp_energy_body_dict[n] += take_nk * sign * value

                if ptype != 'energy':
                    value = cp_ptype_by_level[k]
                    cp_ptype_body_dict[n] += take_nk * sign * value

        _print_nbody_energy(cp_energy_body_dict, "Counterpoise Corrected (CP)")
        cp_interaction_energy = cp_energy_body_dict[max_nbody] - cp_energy_body_dict[1]
        core.set_variable('Counterpoise Corrected Total Energy', cp_energy_body_dict[max_nbody])
        core.set_variable('Counterpoise Corrected Interaction Energy', cp_interaction_energy)

        for n in nbody_range[1:]:
            var_key = 'CP-CORRECTED %d-BODY INTERACTION ENERGY' % n
            core.set_variable(var_key, cp_energy_body_dict[n] - cp_energy_body_dict[1])

    # Compute nocp energy and ptype
    if do_nocp:
        for n in nbody_range:
            if n == max_frag:
                nocp_energy_body_dict[n] = nocp_energy_by_level[n]
                if ptype != 'energy':
                    nocp_ptype_body_dict[n][:] = nocp_ptype_by_level[n]
                continue

            for k in range(1, n + 1):
                take_nk =  nCr(max_frag - k - 1, n - k)
                sign = ((-1) ** (n - k))
                value = nocp_energy_by_level[k]
                nocp_energy_body_dict[n] += take_nk * sign * value

                if ptype != 'energy':
                    value = nocp_ptype_by_level[k]
                    nocp_ptype_body_dict[n] += take_nk * sign * value

        _print_nbody_energy(nocp_energy_body_dict, "Non-Counterpoise Corrected (NoCP)")
        nocp_interaction_energy = nocp_energy_body_dict[max_nbody] - nocp_energy_body_dict[1]
        core.set_variable('Non-Counterpoise Corrected Total Energy', nocp_energy_body_dict[max_nbody])
        core.set_variable('Non-Counterpoise Corrected Interaction Energy', nocp_interaction_energy)

        for n in nbody_range[1:]:
            var_key = 'NOCP-CORRECTED %d-BODY INTERACTION ENERGY' % n
            core.set_variable(var_key, nocp_energy_body_dict[n] - nocp_energy_body_dict[1])


    # Compute vmfc energy and ptype
    if do_vmfc:
        _print_nbody_energy(vmfc_energy_body_dict, "Valiron-Mayer Function Couterpoise (VMFC)")
        vmfc_interaction_energy = vmfc_energy_body_dict[max_nbody] - vmfc_energy_body_dict[1]
        core.set_variable('Valiron-Mayer Function Couterpoise Total Energy', vmfc_energy_body_dict[max_nbody])
        core.set_variable('Valiron-Mayer Function Couterpoise Interaction Energy', vmfc_interaction_energy)

        for n in nbody_range[1:]:
            var_key = 'VMFC-CORRECTED %d-BODY INTERACTION ENERGY' % n
            core.set_variable(var_key, vmfc_energy_body_dict[n] - vmfc_energy_body_dict[1])

    if return_method == 'cp':
        ptype_body_dict = cp_ptype_body_dict
        energy_body_dict = cp_energy_body_dict
    elif return_method == 'nocp':
        ptype_body_dict = nocp_ptype_body_dict
        energy_body_dict = nocp_energy_body_dict
    elif return_method == 'vmfc':
        ptype_body_dict = vmfc_ptype_body_dict
        energy_body_dict = vmfc_energy_body_dict
    else:
        raise ValidationError("N-Body Wrapper: Invalid return type. Should never be here, please post this error on github.")


    # Figure out and build return types
    if return_total_data:
        ret_energy = energy_body_dict[max_nbody]
    else:
        ret_energy = energy_body_dict[max_nbody]
        ret_energy -= energy_body_dict[1]


    if ptype != 'energy':
        if return_total_data:
            np_final_ptype = ptype_body_dict[max_nbody].copy()
        else:
            np_final_ptype = ptype_body_dict[max_nbody].copy()
            np_final_ptype -= ptype_body_dict[1]

            ret_ptype = core.Matrix.from_array(np_final_ptype)
    else:
        ret_ptype = ret_energy

    # Build and set a wavefunction
    wfn = core.Wavefunction.build(molecule, 'sto-3g')
    wfn.nbody_energy = energies_dict
    wfn.nbody_ptype = ptype_dict
    wfn.nbody_body_energy = energy_body_dict
    wfn.nbody_body_ptype = ptype_body_dict

    if ptype == 'gradient':
        wfn.set_gradient(ret_ptype)
    elif ptype == 'hessian':
        wfn.set_hessian(ret_ptype)

    core.set_variable("CURRENT ENERGY", ret_energy)

    if return_wfn:
        return (ret_ptype, wfn)
    else:
        return ret_ptype
Esempio n. 18
0
def _clean_psi_environ(do_clean):
    if do_clean:
        psi4.core.clean_variables()
        psi4.core.clean_options()
        core.clean()
Esempio n. 19
0
def run_gaussian_2(name, **kwargs):

    # throw an exception for open-shells
    if (core.get_option('SCF', 'REFERENCE') != 'RHF'):
        raise ValidationError("""g2 computations require "reference rhf".""")

    # stash user options:
    optstash = p4util.OptionsState(['FNOCC', 'COMPUTE_TRIPLES'],
                                   ['FNOCC', 'COMPUTE_MP4_TRIPLES'], ['BASIS'],
                                   ['FREEZE_CORE'], ['MP2_TYPE'], ['SCF_TYPE'])

    # override default scf_type
    core.set_global_option('SCF_TYPE', 'PK')

    # optimize geometry at scf level
    core.clean()
    core.set_global_option('BASIS', "6-31G(D)")
    driver.optimize('scf')
    core.clean()

    # scf frequencies for zpe
    # NOTE This line should not be needed, but without it there's a seg fault
    scf_e, ref = driver.frequency('scf', return_wfn=True)

    # thermodynamic properties
    du = core.variable('THERMAL ENERGY CORRECTION')
    dh = core.variable('ENTHALPY CORRECTION')
    dg = core.variable('GIBBS FREE ENERGY CORRECTION')

    freqs = ref.frequencies()
    nfreq = freqs.dim(0)
    freqsum = 0.0
    for i in range(0, nfreq):
        freqsum += freqs.get(i)
    zpe = freqsum / constants.hartree2wavenumbers * 0.8929 * 0.5
    core.clean()

    # optimize geometry at mp2 (no frozen core) level
    # note: freeze_core isn't an option in MP2
    core.set_global_option('FREEZE_CORE', "FALSE")
    core.set_global_option('MP2_TYPE', 'CONV')
    driver.optimize('mp2')
    core.clean()

    # qcisd(t)
    core.set_local_option('FNOCC', 'COMPUTE_MP4_TRIPLES', "TRUE")
    core.set_global_option('FREEZE_CORE', "TRUE")
    core.set_global_option('BASIS', "6-311G(D_P)")
    ref = driver.proc.run_fnocc('qcisd(t)', return_wfn=True, **kwargs)

    # HLC: high-level correction based on number of valence electrons
    nirrep = ref.nirrep()
    frzcpi = ref.frzcpi()
    nfzc = 0
    for i in range(0, nirrep):
        nfzc += frzcpi[i]
    nalpha = ref.nalpha() - nfzc
    nbeta = ref.nbeta() - nfzc
    # hlc of gaussian-2
    hlc = -0.00481 * nalpha - 0.00019 * nbeta
    # hlc of gaussian-1
    hlc1 = -0.00614 * nalpha

    eqci_6311gdp = core.variable("QCISD(T) TOTAL ENERGY")
    emp4_6311gd = core.variable("MP4 TOTAL ENERGY")
    emp2_6311gd = core.variable("MP2 TOTAL ENERGY")
    core.clean()

    # correction for diffuse functions
    core.set_global_option('BASIS', "6-311+G(D_P)")
    driver.energy('mp4')
    emp4_6311pg_dp = core.variable("MP4 TOTAL ENERGY")
    emp2_6311pg_dp = core.variable("MP2 TOTAL ENERGY")
    core.clean()

    # correction for polarization functions
    core.set_global_option('BASIS', "6-311G(2DF_P)")
    driver.energy('mp4')
    emp4_6311g2dfp = core.variable("MP4 TOTAL ENERGY")
    emp2_6311g2dfp = core.variable("MP2 TOTAL ENERGY")
    core.clean()

    # big basis mp2
    core.set_global_option('BASIS', "6-311+G(3DF_2P)")
    #run_fnocc('_mp2',**kwargs)
    driver.energy('mp2')
    emp2_big = core.variable("MP2 TOTAL ENERGY")
    core.clean()
    eqci = eqci_6311gdp
    e_delta_g2 = emp2_big + emp2_6311gd - emp2_6311g2dfp - emp2_6311pg_dp
    e_plus = emp4_6311pg_dp - emp4_6311gd
    e_2df = emp4_6311g2dfp - emp4_6311gd

    eg2 = eqci + e_delta_g2 + e_plus + e_2df
    eg2_mp2_0k = eqci + (emp2_big - emp2_6311gd) + hlc + zpe

    core.print_out('\n')
    core.print_out('  ==>  G1/G2 Energy Components  <==\n')
    core.print_out('\n')
    core.print_out('        QCISD(T):            %20.12lf\n' % eqci)
    core.print_out('        E(Delta):            %20.12lf\n' % e_delta_g2)
    core.print_out('        E(2DF):              %20.12lf\n' % e_2df)
    core.print_out('        E(+):                %20.12lf\n' % e_plus)
    core.print_out('        E(G1 HLC):           %20.12lf\n' % hlc1)
    core.print_out('        E(G2 HLC):           %20.12lf\n' % hlc)
    core.print_out('        E(ZPE):              %20.12lf\n' % zpe)
    core.print_out('\n')
    core.print_out('  ==>  0 Kelvin Results  <==\n')
    core.print_out('\n')
    eg2_0k = eg2 + zpe + hlc
    core.print_out('        G1:                  %20.12lf\n' %
                   (eqci + e_plus + e_2df + hlc1 + zpe))
    core.print_out('        G2(MP2):             %20.12lf\n' % eg2_mp2_0k)
    core.print_out('        G2:                  %20.12lf\n' % eg2_0k)

    core.set_variable("G1 TOTAL ENERGY", eqci + e_plus + e_2df + hlc1 + zpe)
    core.set_variable("G2 TOTAL ENERGY", eg2_0k)
    core.set_variable("G2(MP2) TOTAL ENERGY", eg2_mp2_0k)

    core.print_out('\n')
    T = core.get_global_option('T')
    core.print_out('  ==>  %3.0lf Kelvin Results  <==\n' % T)
    core.print_out('\n')

    internal_energy = eg2_mp2_0k + du - zpe / 0.8929
    enthalpy = eg2_mp2_0k + dh - zpe / 0.8929
    gibbs = eg2_mp2_0k + dg - zpe / 0.8929

    core.print_out('        G2(MP2) energy:      %20.12lf\n' % internal_energy)
    core.print_out('        G2(MP2) enthalpy:    %20.12lf\n' % enthalpy)
    core.print_out('        G2(MP2) free energy: %20.12lf\n' % gibbs)
    core.print_out('\n')

    core.set_variable("G2(MP2) INTERNAL ENERGY", internal_energy)
    core.set_variable("G2(MP2) ENTHALPY", enthalpy)
    core.set_variable("G2(MP2) FREE ENERGY", gibbs)

    internal_energy = eg2_0k + du - zpe / 0.8929
    enthalpy = eg2_0k + dh - zpe / 0.8929
    gibbs = eg2_0k + dg - zpe / 0.8929

    core.print_out('        G2 energy:           %20.12lf\n' % internal_energy)
    core.print_out('        G2 enthalpy:         %20.12lf\n' % enthalpy)
    core.print_out('        G2 free energy:      %20.12lf\n' % gibbs)

    core.set_variable("CURRENT ENERGY", eg2_0k)

    core.set_variable("G2 INTERNAL ENERGY", internal_energy)
    core.set_variable("G2 ENTHALPY", enthalpy)
    core.set_variable("G2 FREE ENERGY", gibbs)

    core.clean()

    optstash.restore()

    # return 0K g2 results
    return eg2_0k
Esempio n. 20
0
    def __init__(self,
                 molecule,
                 basis,
                 numpy_memory=2.e9,
                 scf_type="PK",
                 use_c=False):

        # Set defaults
        maxiter = 40
        E_conv = 1.0E-6
        D_conv = 1.0E-3

        # Integral generation from Psi4's MintsHelper
        start_time = time.time()
        self.basis_name = basis
        self.molecule = molecule
        self.basis = pc.BasisSet.build(self.molecule, "ORBITAL", basis)
        self.mints = pc.MintsHelper(self.basis)
        self.S = np.asarray(self.mints.ao_overlap())

        # Get nbf and ndocc for closed shell molecules
        self.nbf = self.S.shape[0]
        self.nel = sum(
            self.molecule.Z(n) for n in range(self.molecule.natom()))
        self.nel -= self.molecule.molecular_charge()

        if not (self.nel / 2.0).is_integer():
            raise ValueError(
                "RHF: Molecule did not have an even number of electrons!")

        self.ndocc = int(self.nel / 2.0)

        print('\nNumber of occupied orbitals: %d' % self.ndocc)
        print('Number of basis functions: %d' % self.nbf)

        # Run a quick check to make sure everything will fit into memory
        I_Size = (self.nbf**4) * 8.e-9
        print("\nSize of the ERI tensor will be %4.2f GB." % I_Size)

        # Estimate memory usage
        memory_footprint = I_Size * 1.5
        if I_Size > numpy_memory:
            pc.clean()
            raise Exception(
                "Estimated memory utilization (%4.2f GB) exceeds numpy_memory \
                            limit of %4.2f GB." %
                (memory_footprint, numpy_memory))

        # Compute required quantities for SCF
        self.V = np.asarray(self.mints.ao_potential())
        self.T = np.asarray(self.mints.ao_kinetic())
        # self.I = np.asarray(self.mints.ao_eri())
        self.JK = jk.build_JK(self.molecule, self.basis_name, scf_type, use_c)

        self.Enuc = self.molecule.nuclear_repulsion_energy()

        print('\nTotal time taken for integrals: %.3f seconds.' %
              (time.time() - start_time))

        t = time.time()

        # Build H_core
        self.H = self.T + self.V

        # Orthogonalizer A = S^(-1/2) using Psi4's matrix power.
        A = self.mints.ao_overlap()
        A.power(-0.5, 1.e-16)
        self.A = np.asarray(A)

        print('\nTotal time taken for setup: %.3f seconds' %
              (time.time() - start_time))