# ------------------------------------------------------------------ # wavelengths and names of reference images used during fit; number of output simulations waves = ["0.345", "0.475", "0.622", "0.763", "0.905", "1.22", "1.63", "2.19"] refs = [ "U_NORM.fits", "G_NORM.fits", "R_NORM.fits", "I_NORM.fits", "Z_NORM.fits", "J_extr.fits", "H_extr.fits", "K_NORM.fits" ] numSimulations = 88 # ------------------------------------------------------------------ # build a list of reference images refImages = [] for ref in refs: im = RGBImage(ref) im.setrange(0, 8e-5) im.applycmap("afmhot") refImages.append(im) # make all reference images the same shape, and remember the final shape of a single image for i in refImages: for j in refImages: i.enlargecanvas(j) imageShape = refImages[0].shape # stack the reference images on top of each other fullRef = refImages[0] for i in range(1, len(refImages)): fullRef.addbelow(refImages[i])
print(waves) # Define new colormap for residuals def discrete_cmap(N=8): # define individual colors as hex values cpool = [ '#000000', '#00EE00', '#0000EE', '#00EEEE', '#EE0000', '#FFFF00', '#EE00EE', '#FFFFFF'] cmap_i8 = col.ListedColormap(cpool[0:N], 'i8') cm.register_cmap(cmap=cmap_i8) # ----------------------------------------------------------------- # build a list of residual images resImages = [] for res in res: im = RGBImage(res) im.setrange(0,1) discrete_cmap(); im.applycmap("i8") resImages.append(im) # make all residual images the same shape, and remember the final shape of a single image for i in resImages: for j in resImages: i.enlargecanvas(j) imageShape = resImages[0].shape # stack the residual images on top of each other fullRes = resImages[0] for i in range(1,len(resImages)): fullRes.addbelow(resImages[i])