Esempio n. 1
0
anneal['anneal_prior'] = False


output_path = create_output_path(basename = job_name)

model = BSC_ET(D, H, Hprime, gamma, to_learn=['W','sigma','pi','mu'])

data = {'y':patches}


out_fname = output_path + "/data.h5"


#setting up logging/output
print_list = ('T', 'Q', 'pi', 'sigma', 'N', 'MAE', 'L')
dlog.set_handler(print_list, TextPrinter)
h5store_list = ('W', 'pi', 'sigma', 'y', 'MAE', 'N','L','Q','mu')
dlog.set_handler(h5store_list, StoreToH5, output_path +'/result.h5')

###### Initialize model #######
# Initialize (Random) model parameters
model_params = model.standard_init(data)

#model_params['mu'] = np.mean(data['y'],axis=0)

# Create and start EM annealing
em = EM(model=model, anneal=anneal)
em.data = data
em.lparams = model_params
em.run()
Esempio n. 2
0
    if not channel_splitted:
        # Take care of not channel splitted case
        size = data_file.root.patches.shape[1] / 2
        my_y = my_y[:, 0:size, :] - my_y[:, size:, :]

# We flatten everything here in the D dimension
my_y = my_y.reshape(my_N, -1)
my_y_rc = my_y_rc.reshape(my_N, -1)

_, D = my_y.shape

#========================= Configure DataLogger  ===============================
print_list = ('T', 'pi', 'sigma', 'N', 'N_use')
store_list = ('*')

dlog.set_handler(print_list, StoreToTxt, output_path + '/terminal.txt')
dlog.set_handler(store_list, StoreToH5, result_path)

#========================= Enable tracing? =====================================
if enable_tracing:
    dlog.progress("Tracing enabled")
    tracing.set_tracefile(output_path + "/trace-%04d.txt")

#=========== Create annealing schedule if not done in param file ===============
if 'anneal' not in dir():
    anneal = LinearAnnealing(anneal_steps)
    anneal['T'] = [(anneal_start, temp_start), (anneal_end, temp_end)]
    anneal['Ncut_factor'] = [(cut_start, 0.), (cut_end, 1.)]
    anneal['anneal_prior'] = anneal_prior
    anneal['W_noise'] = [(noise_decrease, W_noise), (noise_end, 0.)]
    anneal['pi_noise'] = [(noise_decrease, pi_noise), (noise_end, 0.)]
Esempio n. 3
0
# ============================================================================
# Main

if __name__ == "__main__":
    comm = MPI.COMM_WORLD

    pprint("=" * 78)
    pprint(" Running %d parallel processes" % comm.size)
    pprint("=" * 78)

    # Configure DataLogger
    # use('GTKAgg')
    dlog.start_gui(GUI)

    # dlog.set_handler('freeEnergy', YTPlotter)
    dlog.set_handler(("T", "Qmean", "pi", "sigma", "Wmin", "Wmean", "Wmax"), TextPrinter)
    dlog.set_handler("W", RFViewer, rf_shape=(D2, D2), symmetric=0, global_maximum=0)
    # dlog.set_handler('y', RFViewer, rf_shape=(D2, D2))

    # Choose annealing schedule
    anneal = LinearAnnealing(Tsteps)
    anneal["T"] = [(10, Tstart), (-10, Tend)]
    anneal["Ncut_factor"] = [(2 / 3, 0.0), (-10, 1.0)]
    anneal["W_noise"] = [(-10, 0.01), (-1, 0.0)]

    # Prepare ground-truth GFs (bars)
    W_gt = np.zeros((H, D2, D2))
    for i in xrange(D2):
        W_gt[i, i, :] = 10.0
        W_gt[D2 + i, :, i] = 10.0
    W_gt = W_gt.reshape((H, D))
Esempio n. 4
0
#============================================================================
# Main

if __name__ == "__main__":
    comm = MPI.COMM_WORLD

    pprint("="*78)
    pprint(" Running %d parallel processes" % comm.size) 
    pprint("="*78)

    #Configure DataLogger
    #use('GTKAgg')
    dlog.start_gui(GUI)

    #dlog.set_handler('freeEnergy', YTPlotter)
    dlog.set_handler(('T', 'Qmean', 'pi', 'sigma', 'Wmin', 'Wmean', 'Wmax'), TextPrinter)
    dlog.set_handler('W', RFViewer, rf_shape=(D2, D2), symmetric=1, global_maximum=1)
    dlog.set_handler('y', RFViewer, rf_shape=(D2, D2))
    dlog.set_handler(['pi'], YTPlotter)
    dlog.set_handler(['sigma'], YTPlotter)

    # Choose annealing schedule
    anneal = LinearAnnealing(Tsteps)
    anneal['T']           = [(10, Tstart) , (-20, Tend)]
    anneal['Ncut_factor'] = [(0, 0.), (2./3, 1.2)]
    anneal['W_noise']     = [(-10, 0.01), (-1, 0.01)]

    # Prepare ground-truth GFs (bars)
    W_gt = np.zeros( (H, D2, D2) )
    for i in xrange(D2):
        W_gt[   i, i, :] = -10.
Esempio n. 5
0
        pprint("Pi learned, but not noisified.")
    if ("sigma" in to_learn) and (sigma_noise_intensity == 0):
        pprint("Sigma learned, but not noisified.")
    if (not gamma <= Hprime) or (not Hprime <= H):
        pprint("gamma < Hprime < H has to be fullfilled. Aborting.")
        run_algorithm = False
    pprint("============================= ........ =============================\n")

    # if not run_algorithm:
    #    exit(1)
    # ------------------------------ Controls end ---------------------------------

    # Configure DataLogger
    dlog.start_gui(GUI)
    print_list = ("Done", "T", "Q", "pi", "sigma", "N", "MAE")
    dlog.set_handler(print_list, TextPrinter)
    # dlog.set_handler(print_list, StoreToTxt, output_path +'terminal.txt')
    # dlog.set_handler('Q', YTPlotter)
    dlog.set_handler("W", RFViewer, rf_shape=(D2, D2))
    dlog.set_handler(("W", "pi", "sigma", "mu", "y", "MAE", "N"), StoreToH5, output_path + "result.h5")
    # dlog.set_handler(('W', 'pi', 'sigma', 'mu', 'y', 'MAE', 'N'), StoreToH5, output_path +'test_set.h5')
    dlog.set_handler(["pi"], YTPlotter)
    dlog.set_handler(["sigma"], YTPlotter)
    dlog.set_handler("y", RFViewer, rf_shape=(D2, D2))

    # Prepare ground-truth GFs (bars)
    W_gt = np.zeros((H, D2, D2))
    for i in xrange(D2):
        W_gt[i, i, :] = bar_value
        W_gt[D2 + i, :, i] = bar_value
    if neg_bars > 0.0:
Esempio n. 6
0
sys.path.insert(0, "..")

from time import sleep
import numpy as np

from pulp.utils.parallel import pprint
from pulp.utils.datalog import dlog, StoreToH5, TextPrinter
from pulp.visualize.gui import GUI, RFViewer, YTPlotter

# Parameters
rf_shape = (26, 26)
H = 16

# Configure Data-Logger
dlog.start_gui(GUI)
dlog.set_handler('W', RFViewer, rf_shape=rf_shape)
dlog.set_handler('S', YTPlotter)
dlog.set_handler('C', YTPlotter)
dlog.set_handler(('T', 'S', 'C'), TextPrinter)

# And GO!
D = rf_shape[0] * rf_shape[1]

Wshape = (H, D)
i = 0
for T in np.linspace(0., 20, 50):
    i = i + 1
    pprint("%i th iteration..." % i)

    W = np.random.normal(size=Wshape)
    dlog.append_all({
Esempio n. 7
0
        my_y = my_y[:, 0:size, :] - my_y[:, size:, :]

# We flatten everything here in the D dimension
my_y    = my_y.reshape(my_N, -1)
my_y_rc = my_y_rc.reshape(my_N, -1)

_, D = my_y.shape


    

#========================= Configure DataLogger  ===============================
print_list = ('T', 'pi', 'sigma', 'N', 'N_use')
store_list = ('*')

dlog.set_handler(print_list, StoreToTxt, output_path+'/terminal.txt')
dlog.set_handler(store_list, StoreToH5, result_path)

#========================= Enable tracing? =====================================
if enable_tracing:
    dlog.progress("Tracing enabled")
    tracing.set_tracefile(output_path+"/trace-%04d.txt")

#=========== Create annealing schedule if not done in param file ===============
if 'anneal' not in dir():
    anneal = LinearAnnealing(anneal_steps) 
    anneal['T'] = [(anneal_start, temp_start), (anneal_end, temp_end)] 
    anneal['Ncut_factor'] = [(cut_start, 0.),(cut_end, 1.)]   
    anneal['anneal_prior'] = anneal_prior 
    anneal['W_noise'] = [(noise_decrease, W_noise), (noise_end, 0.)] 
    anneal['pi_noise'] = [(noise_decrease, pi_noise), (noise_end, 0.)] 
sys.path.insert(0, "..")

from time import sleep
import numpy as np

from pulp.utils.parallel import pprint
from pulp.utils.datalog import dlog, StoreToH5, TextPrinter
from pulp.visualize.gui import GUI, RFViewer, YTPlotter

# Parameters
rf_shape = (26, 26)
H = 16

# Configure Data-Logger
dlog.start_gui(GUI)
dlog.set_handler('W', RFViewer, rf_shape=rf_shape)
dlog.set_handler('S', YTPlotter)
dlog.set_handler('C', YTPlotter)
dlog.set_handler(('T', 'S', 'C'), TextPrinter)

# And GO!
D = rf_shape[0] * rf_shape[1]

Wshape = (H,D)
i = 0
for T in np.linspace(0., 20, 50):
    i = i + 1
    pprint( "%i th iteration..." % i)

    W = np.random.normal(size=Wshape)
    dlog.append_all( {
Esempio n. 9
0
        pprint("Sigma learned, but not noisified.")
    if (not gamma <= Hprime) or (not Hprime <= H):
        pprint("gamma < Hprime < H has to be fullfilled. Aborting.")
        run_algorithm = False
    pprint(
        "============================= ........ =============================\n"
    )

    #if not run_algorithm:
    #    exit(1)
    # ------------------------------ Controls end ---------------------------------

    # Configure DataLogger
    dlog.start_gui(GUI)
    print_list = ('Done', 'T', 'Q', 'pi', 'sigma', 'N', 'MAE')
    dlog.set_handler(print_list, TextPrinter)
    #dlog.set_handler(print_list, StoreToTxt, output_path +'terminal.txt')
    #dlog.set_handler('Q', YTPlotter)
    dlog.set_handler('W', RFViewer, rf_shape=(D2, D2))
    dlog.set_handler(('W', 'pi', 'sigma', 'mu', 'y', 'MAE', 'N'), StoreToH5,
                     output_path + 'result.h5')
    #dlog.set_handler(('W', 'pi', 'sigma', 'mu', 'y', 'MAE', 'N'), StoreToH5, output_path +'test_set.h5')
    dlog.set_handler(['pi'], YTPlotter)
    dlog.set_handler(['sigma'], YTPlotter)
    dlog.set_handler('y', RFViewer, rf_shape=(D2, D2))

    # Prepare ground-truth GFs (bars)
    W_gt = np.zeros((H, D2, D2))
    for i in xrange(D2):
        W_gt[i, i, :] = bar_value
        W_gt[D2 + i, :, i] = bar_value
Esempio n. 10
0
#============================================================================
# Main

if __name__ == "__main__":
    comm = MPI.COMM_WORLD

    pprint("=" * 78)
    pprint(" Running %d parallel processes" % comm.size)
    pprint("=" * 78)

    #Configure DataLogger
    #use('GTKAgg')
    dlog.start_gui(GUI)

    #dlog.set_handler('freeEnergy', YTPlotter)
    dlog.set_handler(('T', 'Qmean', 'pi', 'sigma', 'Wmin', 'Wmean', 'Wmax'),
                     TextPrinter)
    dlog.set_handler('W',
                     RFViewer,
                     rf_shape=(D2, D2),
                     symmetric=1,
                     global_maximum=1)
    dlog.set_handler('y', RFViewer, rf_shape=(D2, D2))
    dlog.set_handler(['pi'], YTPlotter)
    dlog.set_handler(['sigma'], YTPlotter)

    # Choose annealing schedule
    anneal = LinearAnnealing(Tsteps)
    anneal['T'] = [(10, Tstart), (-20, Tend)]
    anneal['Ncut_factor'] = [(0, 0.), (2. / 3, 1.2)]
    anneal['W_noise'] = [(-10, 0.01), (-1, 0.01)]