Esempio n. 1
0
def test_iterate_regional_gamma_pressure():

    problem = make_lv_mechanics_problem("regional")
    target_gamma = problem.material.activation.vector().get_local()
    for i in range(len(target_gamma)):
        target_gamma[i] = 0.01 - i * 0.001
    gamma = problem.material.activation

    target_pressure = 0.1
    plv = [p.traction for p in problem.bcs.neumann if p.name == "lv"]
    pressure = plv[0]

    iterate(problem, (pressure, gamma), (target_pressure, target_gamma))
Esempio n. 2
0
def test_iterate_regional_gamma_pressure():

    problem = make_lv_mechanics_problem('regional')
    target_gamma = problem.material.activation.vector().get_local()
    for i in range(len(target_gamma)):
        target_gamma[i] = 0.1 - i * 0.001
    gamma = problem.material.activation

    target_pressure = 1.0
    plv = [p.traction for p in problem.bcs.neumann if p.name == 'lv']
    pressure = plv[0]

    with pytest.raises(ValueError):
        iterate(problem, (pressure, gamma), (target_pressure, target_gamma))
Esempio n. 3
0
    def increase_pressure(self):

        p_lv_next = next(self.lv_pressure_gen)
        if self.has_rv:
            p_rv_next = next(self.rv_pressure_gen)
            target = (p_lv_next, p_rv_next)
            control = (self.p_lv, self.p_rv)
        else:
            target = p_lv_next
            control = self.p_lv

        iterate(problem=self.solver,
                target=target,
                control=control,
                continuation=True)
Esempio n. 4
0
    def next_active(self,
                    gamma_current,
                    gamma,
                    assign_prev_state=True,
                    steps=None):

        old_states, old_gammas = self.load_states()

        states, gammas = iterate(problem=self.solver,
                                 control=gamma,
                                 target=gamma_current,
                                 continuation=True,
                                 old_states=old_states,
                                 old_controls=old_gammas)
        # Store these gammas and states which can be used
        # as initial guess for the newton solver in a later
        # iteration
        self.store_states(states, gammas)

        if assign_prev_state:
            # Assign the previous state
            self.solver.reinit(states[-1])
            self.solver.material.activation.assign(gammas[-1])

        return self.get_state(False)
Esempio n. 5
0
def test_iterate_gamma(problem):

    target_gamma = 0.1
    gamma = problem.material.activation

    if has_dolfin_adjoint:
        dolfin.parameters["adjoint"]["stop_annotating"] = False
        dolfin_adjoint.adj_reset()

    iterate(problem, gamma, target_gamma)

    assert all(gamma.vector().get_local() == target_gamma)
    assert dolfin.norm(problem.state.vector()) > 0

    if has_dolfin_adjoint:
        assert dolfin_adjoint.replay_dolfin(tol=1e-12)
Esempio n. 6
0
    def iteration(self, control):
        """
        FIXME
        TODO: Make this more elegant
        """
        logger.info(f"Try control value {constant2float(control)}")
        for count in range(self.data_points):

            # Stop the recording
            annotate = annotation.annotate

            bcs = [bc.bc.traction for bc in self.bcs]
            targets = [bc.data[count] for bc in self.bcs]

            # Iterate bc
            iterate(self.problem, bcs, targets)

            annotation.annotate = False

            # Iterate control
            prev_states, prev_controls = iterate(self.problem, self.control,
                                                 control)

            self.problem.state.assign(prev_states[-1])
            self.control.assign(prev_controls[-1])
            # Continue recording
            annotation.annotate = annotate

            for b in self.bcs:
                b._count = count
                b.assign_bc()

            self.problem.solve()

            self.control.assign(control, annotate=annotate)
            self.problem.solve()

            u, p = dolfin.split(self.problem.state)

            for t in self.targets:
                t._count = count
                t.assign(u, annotate=annotate)

            yield count
Esempio n. 7
0
def test_iterate_pressure(problem):

    target_pressure = 1.0
    plv = [p.traction for p in problem.bcs.neumann if p.name == 'lv']
    pressure = plv[0]

    if has_dolfin_adjoint:
        dolfin.parameters["adjoint"]["stop_annotating"] = False
        dolfin_adjoint.adj_reset()

    iterate(problem, pressure, target_pressure)

    if has_dolfin_adjoint:
        # Check the recording
        assert dolfin_adjoint.replay_dolfin(tol=1e-12)

    # Check that the pressure is correct
    assert float(plv[0]) == target_pressure
    # Check that the state is nonzero
    assert dolfin.norm(problem.state.vector()) > 0
Esempio n. 8
0
def test_iterate_gamma_pressure(problem):
    target_pressure = 1.0
    plv = [p.traction for p in problem.bcs.neumann if p.name == 'lv']
    pressure = plv[0]

    target_gamma = 0.1
    gamma = problem.material.activation

    if has_dolfin_adjoint:
        dolfin.parameters["adjoint"]["stop_annotating"] = False
        dolfin_adjoint.adj_reset()

    iterate(problem, (pressure, gamma), (target_pressure, target_gamma))

    assert all(gamma.vector().get_local() == target_gamma)
    assert float(plv[0]) == target_pressure
    assert dolfin.norm(problem.state.vector()) > 0

    if has_dolfin_adjoint:
        assert dolfin_adjoint.replay_dolfin(tol=1e-12)
Esempio n. 9
0
def test_iterate_gamma_cg1(continuation):

    problem = make_lv_mechanics_problem('CG_1')
    V = problem.material.activation.function_space()
    target_gamma \
        = dolfin.interpolate(dolfin.Expression('0.1 * x[0]',
                                               degree=1), V)
    gamma = problem.material.activation

    if has_dolfin_adjoint:
        dolfin.parameters["adjoint"]["stop_annotating"] = False
        dolfin_adjoint.adj_reset()

    iterate(problem, gamma, target_gamma, continuation=continuation)

    assert np.all(
        gamma.vector().get_local() - target_gamma.vector().get_local() < 1e-12)
    assert dolfin.norm(problem.state.vector()) > 0

    if has_dolfin_adjoint:
        assert dolfin_adjoint.replay_dolfin(tol=1e-12)
Esempio n. 10
0
def test_iterate_gamma_regional():
    problem = make_lv_mechanics_problem('regional')
    target_gamma = problem.material.activation.vector().get_local()
    for i in range(len(target_gamma)):
        target_gamma[i] = 0.1 - i * 0.001
    print(target_gamma)

    gamma = problem.material.activation

    if has_dolfin_adjoint:
        dolfin.parameters["adjoint"]["stop_annotating"] = False
        dolfin_adjoint.adj_reset()

    iterate(problem, gamma, target_gamma)

    print(gamma.vector().get_local())
    assert np.all(gamma.vector().get_local() - target_gamma < 1e-12)
    assert dolfin.norm(problem.state.vector()) > 0

    if has_dolfin_adjoint:
        assert dolfin_adjoint.replay_dolfin(tol=1e-12)