Esempio n. 1
0
 def mutate(self, rate):
     for i in range(len(self.gene)):
         k = np.random.random()
         if k < rate:
             angle = np.random.uniform(-3.14, 3.14)
             vec = Pvector(np.cos(angle), np.sin(angle))
             vec.mult(np.random.uniform(0, self.maxforce))
             self.gene[i] = vec
class Repeller:
    def __init__(self,x=400,y=400):
        self.loc=Pvector(x,y)
        self.dir=None
    def calculateForce(self,location):
        self.dir=Pvector(location.x,location.y)
        self.dir.sub(self.loc)
        self.dir.mult(150/(self.dir.magnitude()**3))
    def display(self):
        no_stroke()
        fill(0)
        ellipse(self.loc.x,self.loc.y,70,70)
Esempio n. 3
0
 def __init__(self, gene=None, lifetime=100):
     self.lifetime = lifetime
     self.maxforce = 4
     if gene == None:
         self.gene = []
         for _ in range(self.lifetime):
             angle = np.random.uniform(-np.pi, np.pi)
             vec = Pvector(np.cos(angle), np.sin(angle))
             vec.mult(np.random.uniform(0, self.maxforce))
             self.gene.append(vec)
     else:
         self.gene = gene
    def generate_target(self):

        if self.car.location.x < 0 or self.car.location.x > 800:
            self.car.velocity.x *= -1
        if self.car.location.y < 0 or self.car.location.y > 800:
            self.car.velocity.y *= -1
        self.predict = Pvector(self.car.location.x, self.car.location.y)
        self.predict.add(self.car.velocity)
        theta = uniform(self.car.velocity.heading() - np.pi / 2,
                        self.car.velocity.heading() + np.pi / 2)
        randvec = Pvector(np.cos(theta), np.sin(theta))
        randvec.mult(self.radius)
        self.predict.add(randvec)
def get_normal(a,b,v):
    global points
    predict=v.velocity.get()
    predict.setMag(50)
    predict.add(v.location)
    predict.sub(a)
    alongpath=Pvector(b.x-a.x,b.y-a.y)
    alongpath.norm()
    mag=predict.dot(alongpath)
    alongpath.mult(mag)
    alongpath.add(a)
    if  points.points[-1].x>points.points[0].x:
        if alongpath.x>b.x or alongpath.x<a.x:
            alongpath=b.get()
    else:
        if alongpath.x<b.x or alongpath.x>a.x:
            alongpath=b.get()
    return alongpath
 def seperate(self,others):
     sum=Pvector(0,0)
     count=0
     for v in others:
         loc=self.location.get()
         loc.sub(v.location)
         d=loc.magnitude()
         if d>0 and d<50:
             loc.mult(1/d)
             sum.add(loc)
             count=count+1
     if count!=0:    
         sum.mult(1/count)
         sum.norm()
         sum.mult(self.maxspeed)
         sum.sub(self.velocity)
         sum.limit(self.maxforce)
     return sum
 def generate_flowfield(self):
     fields=np.empty((self.row,self.column),dtype='object')
     if self.type=='random':
         for i in range(self.row):
             for j in range(self.column):
                 theta=uniform(0,2)*np.pi
                 temp=Pvector(np.cos(theta),np.sin(theta))
                 temp.mult(self.magnitude)
                 fields[i][j]=temp
     elif self.type=='horizontal':
         for i in range(self.row):
             for j in range(self.column):
                 theta=0
                 temp=Pvector(np.cos(theta),np.sin(theta))
                 temp.mult(self.magnitude)
                 fields[i][j]=temp
     elif self.type=='perlin':
         for i in range(self.row):
             for j in range(self.column):
                 theta=pnoise2((i+1)/5,(j+1)/5,octaves=6,persistence=0.5,lacunarity=2.0,repeatx=self.row,repeaty=self.column,base=0)
                 theta*=(2*np.pi)
                 temp=Pvector(np.cos(theta),np.sin(theta))
                 temp.mult(self.magnitude)
                 fields[i][j]=temp
     return fields              
class vehicle:

    def __init__(self,location=(400,400),velocity=(0,0),acceleration=(0,0),maxspeed=10,maxforce=3,field=None): # add field for field followers
        self.location=Pvector(location[0],location[1])
        self.velocity=Pvector(velocity[0],velocity[1])
        self.acceleration=Pvector(acceleration[0],acceleration[1])
        self.maxspeed=maxspeed
        self.maxforce=maxforce
        self.radius=8
        self.field=field
    def seek(self,target):
        desired=Pvector(target.x,target.y)
        desired.sub(self.location)        
        mag=desired.magnitude()
        if mag<100:
            setmag=mag*self.maxspeed/100
            desired.setMag(setmag)
        else:
            desired.setMag(self.maxspeed)
        desired.sub(self.velocity)
        desired.limit(self.maxforce)
        return desired
    def seperate(self,others):
        sum=Pvector(0,0)
        count=0
        for v in others:
            loc=self.location.get()
            loc.sub(v.location)
            d=loc.magnitude()
            if d>0 and d<50:
                loc.mult(1/d)
                sum.add(loc)
                count=count+1
        if count!=0:    
            sum.mult(1/count)
            sum.norm()
            sum.mult(self.maxspeed)
            sum.sub(self.velocity)
            sum.limit(self.maxforce)
        return sum
    def seek_flow(self):
        if self.location.x<0:
            self.location.x=799
        if self.location.x>799:
            self.location.x=0
        if self.location.y<0:
            self.location.y=799
        if self.location.y>799:
            self.location.y=0
        desired=Pvector(self.lookup(self.location).x,self.lookup(self.location).y)
        desired.setMag(self.maxspeed)
        desired.sub(self.velocity)
        desired.limit(self.maxforce)
        self.applyForce(desired)
    def lookup(self,location):
        k=800/self.field.shape[0]
        return self.field[m.floor(location.x/k)][m.floor(location.y/k)]
    def update(self):
        self.velocity.add(self.acceleration)
        self.velocity.limit(self.maxspeed)
        self.location.add(self.velocity)
        self.acceleration.mult(0)
    def applyForce(self,force):
        self.acceleration.add(force)
    def display(self):
        theta=self.velocity.heading()+m.pi/2
        stroke_weight(1)
        stroke(0)
        fill(0)
        push_matrix()
        translate(self.location.x,self.location.y)
        rotate(theta)
        begin_shape()
        vertex(-self.radius,2*self.radius)
        vertex(0,-2*self.radius)
        vertex(self.radius,2*self.radius)
        end_shape(CLOSE)
        pop_matrix()