Esempio n. 1
0
def test_fully_covered_nrel():
    dt = pd.date_range(start="2019-1-1 12:00:00", end="2019-1-1 18:00:00",
                       freq='1h')
    snowfall_data = pd.Series([1, 5, .6, 4, .23, -5, 19], index=dt)
    expected = pd.Series([False, True, False, True, False, False, True],
                         index=dt)
    fully_covered = snow.fully_covered_nrel(snowfall_data)
    assert_series_equal(expected, fully_covered)
Esempio n. 2
0
def test_fully_covered_nrel_irregular():
    # test when frequency is not specified and can't be inferred
    dt = pd.DatetimeIndex(["2019-1-1 11:00:00", "2019-1-1 14:30:00",
                           "2019-1-1 15:07:00", "2019-1-1 14:00:00"])
    snowfall_data = pd.Series([1, .5, .6, .4], index=dt)
    snow_coverage = snow.fully_covered_nrel(snowfall_data,
                                            threshold_snowfall=0.5)
    covered = np.array([False, False, True, False])
    expected = pd.Series(covered, index=dt)
    assert_series_equal(expected, snow_coverage)