def testInferenceWithLocalsCPT(self):
        bn = self.fill()
        bn2 = self.fill2(bn)
        frag = gum.BayesNetFragment(bn)
        for i in bn.nodes():
            frag.installNode(i)
        self.assertTrue(frag.checkConsistency())
        self.assertEqual(frag.size(), 6)
        self.assertEqual(frag.sizeArcs(), 7)

        newV5 = gum.Potential().add(frag.variable("v5")).add(
            frag.variable("v2")).add(frag.variable("v3"))
        newV5.fillWith(bn2.cpt("v5"))
        frag.installCPT("v5", newV5)
        self.assertTrue(frag.checkConsistency())
        self.assertEqual(frag.size(), 6)
        self.assertEqual(frag.sizeArcs(), 6)

        ie2 = gum.LazyPropagation(bn2)
        ie2.makeInference()
        ie = gum.LazyPropagation(frag)
        ie.makeInference()

        for n in frag.names():
            for x1, x2 in zip(
                    ie2.posterior(n).tolist(),
                    ie.posterior(n).tolist()):
                self.assertAlmostEqual(x1,
                                       x2,
                                       delta=1e-5,
                                       msg="For variable '{}'".format(n))
Esempio n. 2
0
def test1(bn1):
    print("=====")
    print("TEST1")
    print("=====")

    evs = {"SAO2": 2, "CATECHOL": 1}
    print("EVIDENCES {}".format(evs))
    bn2, evs2 = conditionalModel(bn1, evs)
    print("  - Mutilation done")

    ie1 = gum.LazyPropagation(bn1)
    ie1.setEvidence(evs)
    ie1.makeInference()

    ie2 = gum.LazyPropagation(bn2)
    ie2.setEvidence(evs2)
    ie2.makeInference()
    print("  - Inference done")

    nb_errors = 0
    for n in bn1.names():
        if not isAlmostEqualPot(ie1.posterior(bn1.idFromName(n)),
                                ie2.posterior(bn2.idFromName(n))):
            nb_errors += 1
            print("Error on {} : {} != {}".format(
                n,
                ie1.posterior(bn1.idFromName(n))[:],
                ie2.posterior(bn2.idFromName(n))[:]))
        else:
            pass
    if nb_errors > 0:
        print("Errors : {}".format(nb_errors))
    else:
        print("No error : inference results are identical.")
Esempio n. 3
0
def main():
    bn1 = gum.loadBN("alarm.bif")
    print("  - BN read")

    evs = {"SAO2": 2, "CATECHOL": 1}
    bn2 = mutilate(gum.BayesNet(bn1), evs)
    print("  - Mutilation done")

    ie1 = gum.LazyPropagation(bn1)
    ie1.setEvidence(evs)
    ie1.makeInference()

    ie2 = gum.LazyPropagation(bn2)
    ie2.setEvidence(evs)
    ie2.makeInference()
    print("  - Inference done")

    nb_errors = 0
    for n in bn1.names():
        if not isAlmostEqualPot(ie1.posterior(bn1.idFromName(n)),
                                ie2.posterior(bn2.idFromName(n))):
            nb_errors += 1
            print("Error on {} : {} != {}".format(
                n,
                ie1.posterior(bn1.idFromName(n))[:],
                ie2.posterior(bn2.idFromName(n))[:]))
        else:
            pass
    if nb_errors > 0:
        print("Errors : {}".format(nb_errors))
    else:
        print("No error : inference results are identical.")
Esempio n. 4
0
  def testOpenBayesSiteExamples(self):
    protoie = gum.LazyPropagation(self.bn)
    protoie.makeInference()
    proto = protoie.posterior(self.w)

    ie = gum.LoopyWeightedSampling(self.bn)
    ie.setVerbosity(True)
    ie.setEpsilon(0.02)
    ie.setMinEpsilonRate(0.001)
    msg = self.iterTest(proto, ie, self.w, {})
    if msg is not None:
      self.fail(msg)

    protoie = gum.LazyPropagation(self.bn)
    protoie.makeInference()
    ie.setEvidence({'s': 0, 'c': 0})
    proto = protoie.posterior(self.w)

    ie = gum.LoopyGibbsSampling(self.bn)
    ie.setVerbosity(False)
    ie.setEpsilon(0.02)
    ie.setMinEpsilonRate(0.001)
    msg = self.iterTest(proto, ie, self.w, {'s': 0, 'c': 0})
    if msg is not None:
      self.fail(msg)
Esempio n. 5
0
def test2(bn1):
    print("=====")
    print("TEST2")
    print("=====")

    evs = {"HYPOVOLEMIA": 0, "CATECHOL": 1, "INTUBATION": 0}
    bn2, evs2 = conditionalModel(bn1, evs)

    # HYPOVOLEMIA has no parent
    if "HYPOVOLEMIA" in evs2:
        print("- HYPOVOLEMIA should not be in evs2")
    try:
        i = bn2.idFromName("HYPOVOLEMIA")
        print("- HYPOVOLEMIA should not be in bn2")
    except:
        pass

    # INTUBATION has no parent
    if "INTUBATION" in evs2:
        print("- INTUBATION should not be in evs2")
    try:
        i = bn2.idFromName("INTUBATION")
        print("- INTUBATION should not be in bn2")
    except:
        pass

    ie1 = gum.LazyPropagation(bn1)
    ie1.setEvidence(evs)
    ie1.makeInference()

    ie2 = gum.LazyPropagation(bn2)
    ie2.setEvidence(evs2)
    ie2.makeInference()
    print("  - Inference done")

    nb_errors = 0
    for n in bn2.names():
        if not isAlmostEqualPot(ie1.posterior(bn1.idFromName(n)),
                                ie2.posterior(bn2.idFromName(n))):
            nb_errors += 1
            print("Error on {} : {} != {}".format(
                n,
                ie1.posterior(bn1.idFromName(n))[:],
                ie2.posterior(bn2.idFromName(n))[:]))
        else:
            pass
    if nb_errors > 0:
        print("Errors : {}".format(nb_errors))
    else:
        print("No error : inference results are identical.")
Esempio n. 6
0
def main():
    bn = gum.loadBN("data/alarm.bif")
    print("BN read")

    evs = {"HR": 1, "PAP": 2}

    m = Gibbs(bn, evs, verbose=True)
    m.run(5e-2, 20)

    print("done")

    ie = gum.LazyPropagation(bn)
    ie.setEvidence(evs)
    ie.makeInference()

    for i in bn.ids():
        v, c = m.results(i)
        if v is not None:
            print("{} : {:3.5f}\n    exact  : {}\n    approx : {}  ({:7.5f})".
                  format(
                      bn.variable(i).name(), utils.KL(ie.posterior(i), v),
                      utils.compactPot(ie.posterior(i)), utils.compactPot(v),
                      c))
        else:
            print("{}: {}".format(
                bn.variable(i).name(), evs[bn.variable(i).name()]))
Esempio n. 7
0
def compareApprox(m, bn, evs):
    """
  Compare results in m with a LazyPropagation on bn with evidence evs

  :param m: the approximated algorithm
  :param bn: the bayesian network
  :param evs: the dict of evidence
  :return: void
  """
    ie = gum.LazyPropagation(bn)
    ie.setEvidence(evs)
    ie.makeInference()

    res = []
    for i in bn.ids():
        v, c = m.results(i)
        if v is not None:
            res.append((bn.variable(i).name(), KL(ie.posterior(i), v),
                        compactPot(ie.posterior(i)), compactPot(v), c))
        else:
            print("{}: {}".format(
                bn.variable(i).name(), evs[bn.variable(i).name()]))

    for r in sorted(res, key=lambda item: item[1], reverse=True):
        print(
            "{} : {:3.5f}\n        exact  : {}\n        approx : {}  ({:7.5f})"
            .format(*r))
Esempio n. 8
0
def run_bn_unsup(train_corr, test_corr, structure):
    """"
    This method first learns a BN based on train_corr, then it propagates evidence from test_corr through it, after
    which a new data set is created based on the new posteriors
    :param train_corr: training-data, not in one-hot encoding form!
    :param test_corr: test-data that is being updated, in one-hot encoding form
    :param structure: structure of the data (how many categories each attribute has)
    """
    structure_0 = [0] + structure

    # Learn the BN based on train_corr
    learner = gum.BNLearner(train_corr)
    learner.useScoreBDeu()
    bn = learner.learnBN()

    # Create a placeholder for the net_data
    new_data = np.zeros(test_corr.shape)
    for i in range(test_corr.shape[0]):
        dp = test_corr[i, :]  # fix an observation
        evs = {}
        k = 0
        for n in bn.nodes(
        ):  # Convert the evidence to a dictionary structure needed for propagation
            evs[n] = dp[sum(structure_0[:k + 1]):sum(structure_0[:k + 2])]
            k += 1
        ie = gum.LazyPropagation(bn)
        ie.setEvidence(evs)  # set the evidence
        pst = [ie.posterior(n).toarray() for n in bn.nodes()
               ]  # Extract the posteriors and store them in new_data
        new_data[i, :] = list(itertools.chain.from_iterable(pst))
        ie.eraseAllEvidence()
    return new_data
Esempio n. 9
0
def compil(bn, targets, evs):
    """This function uses all the predefined functions above to fill the compiler array with instructions to get the targets of a bn according to evidences"""
    ie = gum.LazyPropagation(bn)
    jt = ie.junctionTree()
    #hardToSoftEvidences(bn, evs)
    absorp = []  #the list for the absorption
    diffu = []  #the list for the diffusion
    cliquesTar = {
    }  #the dictionnary which contains the couples {target:clique}
    r = mainClique(bn, jt, targets)
    n = r
    targetmp1 = list(targets)  #for parcours (this list is changed)
    deleteTarMainCliq(bn, jt, targetmp1, r)
    targetmp2 = list(targetmp1)  #for inference (this list is not changed)
    parcours(bn, jt, targetmp1, n, r, absorp, diffu, cliquesTar)
    #Creation and initialization of potentials
    creationPotentialsAbsorp(bn, jt, absorp)
    initPotentialsAbsorp(bn, jt, absorp)
    evsPotentials(bn, jt, evs, absorp)
    creaIniPotentialsDiffu(bn, jt, diffu, cliquesTar, targets, absorp)

    #Absorption and diffusion
    inference(bn, jt, absorp, diffu, targets, targetmp2, cliquesTar)
    #Computing targets
    output(bn, jt, targets, absorp, diffu, cliquesTar)
    return compilator.getTab()
Esempio n. 10
0
  def testWithDifferentVariables(self):
    protoie = gum.LazyPropagation(self.bn)
    protoie.addEvidence('r', 1)
    protoie.addEvidence('w', 0)
    protoie.makeInference()
    proto = protoie.posterior(self.s)

    ie = gum.LoopyWeightedSampling(self.bn)
    ie.setVerbosity(False)
    ie.setEpsilon(0.1)
    ie.setMinEpsilonRate(0.01)

    msg = self.iterTest(proto, ie, self.s, {'r': [0, 1], 'w': (1, 0)})
    if msg is not None:
      self.fail(msg)

    ie2 = gum.LoopyGibbsSampling(self.bn)
    ie2.setVerbosity(False)
    ie2.setEpsilon(0.1)
    ie2.setMinEpsilonRate(0.01)
    ie2.setEvidence({'r': 1, 'w': 0})
    ie2.makeInference()

    msg = self.iterTest(proto, ie2, self.s, {'r': 1, 'w': 0})
    if msg is not None:
      self.fail(msg)

    ie3 = gum.LoopyMonteCarloSampling(self.bn)
    ie3.setVerbosity(False)
    ie3.setEpsilon(0.1)
    ie3.setMinEpsilonRate(0.01)

    msg = self.iterTest(proto, ie3, self.s, {'r': [0, 1], 'w': (1, 0)})
    if msg is not None:
      self.fail(msg)
Esempio n. 11
0
def getInformationGraph(bn,
                        evs=None,
                        size=None,
                        cmap=_INFOcmap,
                        withMinMax=False):
    """
  Create a dot representation of the information graph for this BN

  Parameters
  ----------
  bn: gum.BayesNet
    the BN
  evs : Dict[str,str|int|List[float]]
    map of evidence
  size: str|int
    size of the graph
  cmap: matplotlib.colors.Colormap
    color map
  withMinMax: bool
    min and max in the return values ?

  Returns
  -------
  dot.Dot | Tuple[dot.Dot,float,float]
    graph as a dot representation and if asked, min_information_value, max_information_value
  """
    if size is None:
        size = gum.config["notebook", "default_graph_size"]

    if evs is None:
        evs = {}

    ie = gum.LazyPropagation(bn)
    ie.setEvidence(evs)
    ie.makeInference()

    idEvs = {bn.idFromName(name) for name in evs}
    nodevals = {
        bn.variable(n).name(): ie.H(n)
        for n in bn.nodes() if not n in idEvs
    }
    arcvals = {(x, y): ie.I(x, y) for x, y in bn.arcs()}
    gr = BN2dot(bn,
                size,
                nodeColor=_normalizeVals(nodevals, hilightExtrema=False),
                arcWidth=arcvals,
                cmapNode=cmap,
                cmapArc=cmap,
                showMsg=nodevals)

    mi = min(nodevals.values())
    ma = max(nodevals.values())

    if withMinMax:
        return gr, mi, ma
    else:
        return gr
Esempio n. 12
0
  def testJointMutualInformation(self):
    bn = gum.fastBN("A->B->C->D;A->E->D;F->B;C->H;")
    ie = gum.LazyPropagation(bn)
    ie.makeInference()

    with self.assertRaises(gum.InvalidArgument):
      ie.jointMutualInformation([0])

    self.assertAlmostEqual(ie.I(0, 1), ie.jointMutualInformation([0, 1]))
    self.assertAlmostEqual(ie.I("A", "B"), ie.jointMutualInformation(["A", "B"]))

    ie = gum.LazyPropagation(bn)
    ie.addJointTarget({1, 4, 3})
    ie.addAllTargets()
    ie.makeInference()

    byHandJMI = 0
    byHandJMI -= ie.jointPosterior({1, 3, 4}).entropy()
    byHandJMI += ie.jointPosterior({1, 4}).entropy() + ie.jointPosterior({1, 3}).entropy() + ie.jointPosterior(
        {4, 3}).entropy()
    byHandJMI -= ie.posterior(1).entropy() + ie.posterior(4).entropy() + ie.posterior(3).entropy()

    ie2 = gum.LazyPropagation(bn)
    JMI = ie2.jointMutualInformation({1, 3, 4})
    self.assertAlmostEqual(JMI, byHandJMI)

    ie = gum.LazyPropagation(bn)
    ie.addJointTarget({0, 1, 2, 3})
    ie.addAllTargets()
    ie.makeInference()

    byHandJMI = 0
    byHandJMI -= ie.jointPosterior({0, 1, 2, 3}).entropy()
    byHandJMI += ie.jointPosterior({0, 1, 2}).entropy() + ie.jointPosterior({0, 1, 3}).entropy() + ie.jointPosterior(
        {0, 2, 3}).entropy() + ie.jointPosterior({1, 2, 3}).entropy()
    byHandJMI -= ie.jointPosterior({0, 1}).entropy() + ie.jointPosterior({0, 2}).entropy() + ie.jointPosterior(
        {0, 3}).entropy() + ie.jointPosterior({1, 2}).entropy() + ie.jointPosterior(
        {1, 3}).entropy() + ie.jointPosterior({2, 3}).entropy()
    byHandJMI += ie.posterior(0).entropy() + ie.posterior(1).entropy() + ie.posterior(2).entropy() + ie.posterior(
        3).entropy()

    ie2 = gum.LazyPropagation(bn)
    JMI = ie2.jointMutualInformation({0, 1, 2, 3})
    self.assertAlmostEqual(JMI, byHandJMI)
Esempio n. 13
0
def plotFollowUnrolled(lovars, dbn, T, evs, vars_title=None):
    """
  plot the dynamic evolution of a list of vars with a dBN

  :param lovars: list of variables to follow
  :param dbn: the unrolled dbn
  :param T: the time range
  :param evs: observations
  :param vars_title: string for default or a dictionary with the variable name as key and the respective title as value.
  """
    ie = gum.LazyPropagation(dbn)
    ie.setEvidence(evs)
    ie.makeInference()

    x = np.arange(T)

    for var in lovars:
        v0 = dbn.variableFromName(var + "0")
        lpots = []
        for i in range(v0.domainSize()):
            serie = []
            for t in range(T):
                serie.append(ie.posterior(dbn.idFromName(var + str(t)))[i])
            lpots.append(serie)

        _, ax = plt.subplots()
        plt.xlim(left=0, right=T - 1)
        plt.ylim(top=1, bottom=0)
        ax.xaxis.grid()

        # Setting a customized title
        if vars_title is None:
            plt.title(f"Following variable {var}", fontsize=20)
        elif len(vars_title) != 0:
            plt.title(vars_title[var], fontsize=20)
        else:
            raise TypeError("Incorrect format of the plots title dictionary")

        plt.xlabel('time')

        stack = ax.stackplot(x, lpots)

        proxy_rects = [
            Rectangle((0, 0), 1, 1, fc=pc.get_facecolor()[0]) for pc in stack
        ]
        labels = [v0.label(i) for i in range(v0.domainSize())]
        plt.legend(proxy_rects,
                   labels,
                   loc='center left',
                   bbox_to_anchor=(1, 0.5),
                   ncol=1,
                   fancybox=True,
                   shadow=True)

        plt.show()
Esempio n. 14
0
  def testEvidenceJointImpact(self):
    bn = gum.fastBN("A->B->C->D;A->E->D;F->B;C->H;")
    ie = gum.LazyPropagation(bn)

    res = ie.evidenceJointImpact(["D", "E"], ["A", "B", "C", "F"])

    joint = bn.cpt("A") * bn.cpt("B") * bn.cpt("C") * bn.cpt("D") * bn.cpt("E") * bn.cpt("F") * bn.cpt("H")
    pADCE = joint.margSumIn(["A", "C", "D", "E"])
    pAC = pADCE.margSumOut(["D", "E"])

    self.assertEqual(res, pADCE / pAC)
Esempio n. 15
0
    def testMutilateBN2(self):
        bn = gum.fastBN("P2->N<-P1;A->E2<-N->E1")

        bn2, ev2 = gum.mutilateBN(bn,
                                  intervention={},
                                  observation={
                                      'A': ["1"],
                                      "N": [1, 1]
                                  })

        ie = gum.LazyPropagation(bn)
        ie.setEvidence(ev2)
        ie.makeInference()

        ie2 = gum.LazyPropagation(bn2)
        ie2.setEvidence(ev2)
        ie2.makeInference()

        for n in bn2.names():
            self.assertEquals(
                ie.posterior(n).tolist(),
                ie2.posterior(n).tolist())
Esempio n. 16
0
    def predict_learner_knowledge_states_from_learner_traces(
            self, learner_traces):
        knowledge_components = self.associated_learner_pool.get_knowledge_components(
        )
        bn = unroll_2tbn(self.bn, len(learner_traces) + 1)
        # Setup the soft evidences in the BNow
        evidences = {}
        for i, trace in enumerate(learner_traces):
            evaluated_kc = trace.get_kc()
            success = trace.get_success()
            exercise = trace.get_exercise()
            guess, slip = self.associated_learner_pool.get_guess(
                exercise), self.associated_learner_pool.get_slip(exercise)
            learn, forget = self.associated_learner_pool.get_learn(
                evaluated_kc), self.associated_learner_pool.get_forget(
                    evaluated_kc)

            bn.add(
                gum.LabelizedVariable(f"exercise({exercise.id}){i}",
                                      f"exercise({exercise.id}){i}", 2))
            bn.addArc(f"({evaluated_kc.id}){i}", f"exercise({exercise.id}){i}")

            bn.cpt(f"exercise({exercise.id}){i}")[{
                f"({evaluated_kc.id}){i}": 0
            }] = [1 - guess, guess]
            bn.cpt(f"exercise({exercise.id}){i}")[{
                f"({evaluated_kc.id}){i}": 1
            }] = [slip, 1 - slip]
            evidences[f"exercise({exercise.id}){i}"] = int(success)

            bn.cpt(f"(Z[({evaluated_kc.id})0->({evaluated_kc.id})t]){i+1}")[{
                f"({evaluated_kc.id}){i}":
                0
            }] = [1 - learn, learn]
            bn.cpt(f"(Z[({evaluated_kc.id})0->({evaluated_kc.id})t]){i+1}")[{
                f"({evaluated_kc.id}){i}":
                1
            }] = [forget, 1 - forget]
            """
            evidences[f"({evaluated_kc.id}){i}"] = [guess, 1 - guess] if success else [
                1 - slip, slip]
        """
        # Setup the inference
        ie = gum.LazyPropagation(bn)
        ie.setEvidence(evidences)
        ie.makeInference()
        knowledge_states = {}
        for kc in knowledge_components:
            knowledge_states[f"{kc.id}"] = ie.posterior(
                bn.idFromName(f"({kc.id}){len(evidences.keys())}"))[1]
        return knowledge_states
Esempio n. 17
0
    def testRelevantReasonning(self):
        # an inference for all the bn with an hard evidence and an inference for
        # the right fragment with a local CPT should be the same
        bn = self.fill()
        inf_complete = gum.LazyPropagation(bn)
        inf_complete.setEvidence({"v3": 1})
        inf_complete.makeInference()
        p = inf_complete.posterior("v6")

        frag = gum.BayesNetFragment(bn)
        frag.installAscendants("v6")
        marg = gum.Potential().add(frag.variable("v3"))
        marg.fillWith([0, 1])
        frag.installMarginal("v3", marg)
        self.assertEqual(frag.size(), 3)
        self.assertEqual(frag.sizeArcs(), 1)
        inf_frag = gum.LazyPropagation(frag)
        inf_frag.makeInference()

        for x1, x2 in zip(
                inf_complete.posterior("v6").tolist(),
                inf_frag.posterior("v6").tolist()):
            self.assertAlmostEqual(x1, x2, delta=1e-5)
Esempio n. 18
0
def main():
    bn = gum.loadBN("alarm.bif")

    ie = gum.LazyPropagation(bn)
    ie.makeInference()

    m = ParallelMonteCarlo(bn)
    m.run(1e-2, 300, verbose=True)

    print("done")
    for i in bn.ids():
        print("{}: {}".format(
            bn.variable(i).name(),
            int(100000 * utils.KL(ie.posterior(i), m.posterior(i))) / 1000))
Esempio n. 19
0
def main():
    bn = gum.loadBN("alarm.bif")

    ie = gum.LazyPropagation(bn)
    ie.makeInference()

    m = MonteCarlo(bn)
    m.run(1e-2, 300, verbose=True)

    print("done")

    for i in bn.ids():
        ev, ec, hv, hc = m.everything(i)
        print("{}: {} ({}) =!= {} ({})".format(
            bn.variable(i).name(), ev, ec, hv, hc))
Esempio n. 20
0
  def testEvidenceImpactWithNodeId(self):
    bn = gum.loadBN(self.agrumSrcDir('asia.bif'), [],
                    verbose=False)  # verbose=False : don't want to see the warnings

    ie = gum.LazyPropagation(bn)

    self.assertEqual(len(ie.BN().arcs()),8)

    with self.assertRaises(gum.InvalidArgument):
      res = ie.evidenceImpact(0, [0, 1, 2])

    res = ie.evidenceImpact(0, [1, 2])

    self.assertEqual(res.nbrDim(), 2)  # 2 indep 0 given 1

    self.assertEqual(res.extract({"tuberculosis?": 0}), gum.getPosterior(bn, target=0, evs={1: 0}))
    self.assertEqual(res.extract({"tuberculosis?": 1}), gum.getPosterior(bn, target=0, evs={1: 1}))
Esempio n. 21
0
  def testOr(self):
    bn = gum.BayesNet()
    c1, c2 = [bn.add(gum.LabelizedVariable(item, item, 2)) for item in ['C1', 'C2']]
    a = bn.addOR(gum.LabelizedVariable('a', 'a', 2))
    bn.addArc(c1, a)
    bn.addArc(c2, a)

    for i in range(2):
      bn.cpt(c1)[:] = [i, 1 - i]
      for j in range(2):
        bn.cpt(c2)[:] = [j, 1 - j]
        ie = gum.LazyPropagation(bn)
        ie.makeInference()
        if i * j == 0:
          self.assertEqual(ie.posterior(a)[:][0], 0.0)
          self.assertEqual(ie.posterior(a)[:][1], 1.0)
        else:
          self.assertEqual(ie.posterior(a)[:][0], 1.0)
          self.assertEqual(ie.posterior(a)[:][1], 0.0)
Esempio n. 22
0
  def testEvidenceImpactWithName(self):
    bn = gum.loadBN(self.agrumSrcDir('asia.bif'), [],
                    verbose=False)  # verbose=False : don't want to see the warnings

    ie = gum.LazyPropagation(bn)
    with self.assertRaises(gum.InvalidArgument):
      res = ie.evidenceImpact("visit_to_Asia?", ["visit_to_Asia?", "tuberculosis?", "tuberculos_or_cancer?"])

    with self.assertRaises(gum.NotFound):
      res = ie.evidenceImpact("visit_to_Asia?", ["toto", "tuberculosis?", "tuberculos_or_cancer?"])

    res = ie.evidenceImpact("visit_to_Asia?", ["tuberculosis?", "tuberculos_or_cancer?"])

    self.assertEqual(res.nbrDim(), 2)  # 2 indep 0 given 1

    self.assertEqual(res.extract({"tuberculosis?": 0}),
                     gum.getPosterior(bn, target="visit_to_Asia?", evs={"tuberculosis?": 0}))
    self.assertEqual(res.extract({"tuberculosis?": 1}),
                     gum.getPosterior(bn, target="visit_to_Asia?", evs={"tuberculosis?": 1}))
Esempio n. 23
0
 def build_save_BN(self, dGraphNodes, dGraphEdges, randomCPTs):
     dGraphEdges = [(str(A), str(B)) for (A, B) in dGraphEdges]
     bn = gum.BayesNet(self.name)
     [
         bn.add(gum.LabelizedVariable(str(var), str(var), 2))
         for var in dGraphNodes
     ]
     for edge in dGraphEdges:
         bn.addArc(edge[0], edge[1])
     if randomCPTs:
         # For generate all CPTs
         bn.generateCPTs()
     # To graph and save BN
     gumGraph.dotize(bn, self.path + self.name, 'pdf')
     gum.saveBN(bn, self.path + self.name + '.bifxml')
     self.generator = gum.BNDatabaseGenerator(bn)
     self.ie = gum.LazyPropagation(bn)
     self.bn = bn
     self.structure = [dGraphNodes, dGraphEdges]
Esempio n. 24
0
  def WikipediaExample(self):
    protoie = gum.LazyPropagation(self.bn2)
    protoie.makeInference()
    proto = protoie.posterior('w2')

    ie = gum.LoopyWeightedSampling(self.bn2)
    ie.setVerbosity(False)
    ie.setEpsilon(0.01)
    ie.setMinEpsilonRate(0.001)
    msg = self.iterTest(proto, ie, 'w2', {})
    if msg is not None:
      self.fail(msg)

    ie2 = gum.LoopyMonteCarloSampling(self.bn2)
    ie2.setVerbosity(False)
    ie2.setEpsilon(0.01)
    ie2.setMinEpsilonRate(0.001)
    msg = self.iterTest(proto, ie2, 'w2', {})
    if msg is not None:
      self.fail(msg)
 def __init__(self, bn, truth_values):
     self.truth_values = truth_values
     self.scenario_nodes = []
     try:
         bn.variable('constraint')
         try:
             bn.variable('aux')
         except:
             print("No aux node found, restructuring network into Fenton 2016 style")
             self.restructure_bn_fenton(bn)
     except:
         #print("No constraint-aux construction implemented yet. Doing that now.")
         self.implement_aux_constraint_structure(bn)
     self.bn = bn
     self.casemodel = case_model.CaseModel([({}, 1)])
     ie = gum.LazyPropagation(bn)
     self.ie = ie
     self.global_evidence_dict = {'constraint': truth_values[0]}
     ie.setEvidence(self.global_evidence_dict)
     self.create_first_cases()
Esempio n. 26
0
  def testDictOfSequences(self):
    protoie = gum.LazyPropagation(self.bn)
    protoie.addEvidence('s', 1)
    protoie.addEvidence('w', 0)
    protoie.makeInference()
    proto = protoie.posterior(self.r)

    ie = gum.LoopyImportanceSampling(self.bn)
    ie.setVerbosity(False)
    ie.setEpsilon(0.05)
    ie.setMinEpsilonRate(0.001)
    msg = self.iterTest(proto, ie, self.r, {'s': [0, 1], 'w': (1, 0)})
    if msg is not None:
      self.fail(msg)

    ie = gum.LoopyImportanceSampling(self.bn)
    ie.setVerbosity(False)
    ie.setEpsilon(0.05)
    ie.setMinEpsilonRate(0.001)
    msg = self.iterTest(proto, ie, self.r, ({'s': 1, 'w': 0}))
    if msg is not None:
      self.fail(msg)
Esempio n. 27
0
  def testDictOfLabels(self):
    protoie = gum.LazyPropagation(self.bn)
    protoie.addEvidence('s', 0)
    protoie.addEvidence('w', 1)
    protoie.makeInference()
    proto = protoie.posterior(self.r)

    ie = gum.LoopyGibbsSampling(self.bn)
    ie.setVerbosity(False)
    ie.setEpsilon(0.05)
    ie.setMinEpsilonRate(0.001)
    msg = self.iterTest(proto, ie, self.r, {'s': 0, 'w': 1})
    if msg is not None:
      self.fail(msg)

    ie = gum.LoopyGibbsSampling(self.bn)
    ie.setVerbosity(False)
    ie.setEpsilon(0.05)
    ie.setMinEpsilonRate(0.001)
    msg = self.iterTest(proto, ie, self.r, {'s': 'no', 'w': 'yes'})
    if msg is not None:
      self.fail(msg)
Esempio n. 28
0
    def eval(self, contextual_bn: "pyAgrum.BayesNet") -> "pyAgrum.Potential":
        if self._verbose:
            print(f"EVAL ${self.fastToLatex(defaultdict(int))}$ in context",
                  flush=True)
        ie = pyAgrum.LazyPropagation(contextual_bn)
        if len(self.varNames) > 1:
            svars = set(self.varNames)
            ie.addJointTarget(svars)
            ie.makeInference()
            res = ie.jointPosterior(svars)
        else:
            for name in self.varNames:
                break  # take the first and only one name in varNames
            ie.makeInference()
            res = ie.posterior(name)

        if self._verbose:
            print(
                f"END OF EVAL ${self.fastToLatex(defaultdict(int))}$ : {res}",
                flush=True)

        return res
Esempio n. 29
0
    def eval(self, contextual_bn: "pyAgrum.BayesNet") -> "pyAgrum.Potential":
        if self._verbose:
            print(f"EVAL ${self.fastToLatex(defaultdict(int))} in context",
                  flush=True)
        ie = pyAgrum.LazyPropagation(contextual_bn)
        p = None

        # simple case : we just need a CPT from the BN
        if len(self.vars) == 1:
            for x in self.vars:
                break  # we keep the first one and only one
            ix = contextual_bn.idFromName(x)
            if {
                    contextual_bn.variable(i).name()
                    for i in contextual_bn.parents(ix)
            } == self.knw:
                p = contextual_bn.cpt(ix)

        if p is None:
            if len(self.knw) == 0:
                ie.addJointTarget(self.vars)
                ie.makeInference()
                p = ie.jointPosterior(self.vars)
            else:
                ie.addJointTarget(self.vars | self.knw)
                ie.makeInference()
                p = ie.jointPosterior(self.vars
                                      | self.knw) / ie.jointPosterior(self.knw)

        #
        # res = p.extract({k: v for k, v in context.todict().items() if k in self.vars + self.knw})

        if self._verbose:
            print(f"END OF EVAL ${self.fastToLatex(defaultdict(int))}$ : {p}",
                  flush=True)

        return p
Esempio n. 30
0
    def setUp(self):
        self.bn = gum.BayesNet()

        self.c, self.r = \
          [self.bn.add(gum.LabelizedVariable(name, name, 2))
           for name in 'c r'.split()]
        self.s, self.w = \
          [self.bn.add(gum.LabelizedVariable(name, name, 0).addLabel('no').addLabel('yes'))
           for name in 's w'.split()]

        for link in [(self.c, self.s), (self.c, self.r), (self.s, self.w),
                     (self.r, self.w)]:
            self.bn.addArc(*link)

        self.bn.cpt(self.c)[:] = [0.5, 0.5]
        self.bn.cpt(self.s)[:] = [[0.5, 0.5], [0.9, 0.1]]
        self.bn.cpt(self.r)[:] = [[0.8, 0.2], [0.2, 0.8]]
        self.bn.cpt(self.w)[0, 0, :] = [1, 0]
        self.bn.cpt(self.w)[0, 1, :] = [0.1, 0.9]
        self.bn.cpt(self.w)[1, 0, :] = [0.1, 0.9]
        self.bn.cpt(self.w)[1, 1, :] = [0.01, 0.99]

        self.ie = gum.LazyPropagation(self.bn)
        self.jt = self.ie.junctionTree()