def plot(self, dataDir, plotDir, files): n = len(files) # number of bar pairs needed cmName = { 'NoCountermeasure': 'No countermeasure', 'AdditiveNoise': 'Additive noise', 'Transfiguration': 'Transfiguration', 'KAnonymity': 'K Anonymity', 'KClustering': 'K Clustering' } width = 0.35 pyf = PyFunctions() ic_random = [] # hold ic value of random queries ic_smart = [] # hold ic value of smart queries ctm = [] for x in range(len(files)): try: path = dataDir + 'cmp_' + files[x] + '.txt' f = open(path, 'r') l = [map(float, line.split()) for line in f] avgl = pyf.average(l[1:]) ic_random.append(avgl[len(avgl) - 1]) path = dataDir + 'cmp_smart_' + files[x] + '.txt' f = open(path, 'r') l = [map(float, line.split()) for line in f] avgl = pyf.average(l[1:]) ic_smart.append(avgl[len(avgl) - 1]) ctm.append(cmName[files[x]]) except Exception, e: continue
def plot_random(self, dataDir, plotDir, files): output = plotDir pyf = PyFunctions() for x in range(len(files)): path = dataDir + files[x] try: f = open(path, 'r') except Exception, e: continue l = [map(float, line.split()) for line in f] if files[x] == 'cmp_NoCountermeasure.txt': label = "No countermeasure" marker = '.' elif files[x] == 'cmp_AdditiveNoise.txt': label = "Additive noise" marker = "*" elif files[x] == 'cmp_Transfiguration.txt': label = "Transfiguration" marker = "o" elif files[x] == 'cmp_KAnonymity.txt': label = "K anonymity" marker = "^" elif files[x] == 'cmp_KClustering.txt': label = "K clustering" marker = "D" plt.plot(l[0], pyf.normalize(pyf.average(l[1:])), label = label, marker = marker)
def plot_random(self, dataDir, plotDir, files): output = plotDir pyf = PyFunctions() for x in range(len(files)): path = dataDir + files[x] try: f = open(path, 'r') except Exception, e: continue l = [map(float, line.split()) for line in f] if files[x] == 'cmp_NoCountermeasure.txt': label = "No countermeasure" marker = '.' elif files[x] == 'cmp_AdditiveNoise.txt': label = "Additive noise" marker = "*" elif files[x] == 'cmp_Transfiguration.txt': label = "Transfiguration" marker = "o" elif files[x] == 'cmp_KAnonymity.txt': label = "K anonymity" marker = "^" elif files[x] == 'cmp_KClustering.txt': label = "K clustering" marker = "D" plt.plot(l[0], pyf.normalize(pyf.average(l[1:])), label=label, marker=marker)
def plot(self, dataDir, plotDir, files): n = len(files) # number of bar pairs needed cmName = {'NoCountermeasure': 'No countermeasure', 'AdditiveNoise': 'Additive noise', 'Transfiguration': 'Transfiguration', 'KAnonymity': 'K Anonymity', 'KClustering': 'K Clustering'} width = 0.35 pyf = PyFunctions() ic_random = [] # hold ic value of random queries ic_smart = [] # hold ic value of smart queries ctm = [] for x in range(len(files)): try: path = dataDir + 'cmp_' + files[x] + '.txt' f = open(path, 'r') l = [map(float, line.split()) for line in f] avgl = pyf.average(l[1:]) ic_random.append(avgl[len(avgl) - 1]) path = dataDir + 'cmp_smart_' + files[x] + '.txt' f = open(path, 'r') l = [map(float, line.split()) for line in f] avgl = pyf.average(l[1:]) ic_smart.append(avgl[len(avgl) - 1]) ctm.append(cmName[files[x]]) except Exception, e: continue
def plot_random_smart(self, dataDir, plotDir, files): output = plotDir pyf = PyFunctions() for x in range(len(files)): path = dataDir + files[x] try: f = open(path, 'r') except Exception, e: continue l = [map(float, line.split()) for line in f] if files[x] == 'cmp_NoCountermeasure.txt': label = "Random queries" marker = '.' elif files[x] == 'cmp_smart_NoCountermeasure.txt': label = "Smart qeuries" marker = "*" plt.plot(l[0], pyf.normalize(pyf.average(l[1:])), label = label, marker = marker)
def plot_random_smart(self, dataDir, plotDir, files): output = plotDir pyf = PyFunctions() for x in range(len(files)): path = dataDir + files[x] try: f = open(path, 'r') except Exception, e: continue l = [map(float, line.split()) for line in f] if files[x] == 'cmp_NoCountermeasure.txt': label = "Random queries" marker = '.' elif files[x] == 'cmp_smart_NoCountermeasure.txt': label = "Smart qeuries" marker = "*" plt.plot(l[0], pyf.normalize(pyf.average(l[1:])), label=label, marker=marker)