Esempio n. 1
0
    def train_model(self):
        if self.verbose:
            print("training GP model ...")

        self.gpMdl = gp.GPR()
        m = gp.mean.Zero()
        k = gp.cov.RBFard(D=None,
                          log_ell_list=self.gp_hyp[:-1],
                          log_sigma=self.gp_hyp[-1])
        '''
        try:
            self.gpMdl.setPrior(mean=m, kernel=k)
            self.gpMdl.setNoise(log_sigma = np.log(0.8))
            self.gpMdl.setOptimizer('BFGS')#('minimize');
            #self.gpMdl.getPosterior(self.gprX, self.gprY)
            self.gpMdl.optimize(self.gprX,self.gprY)#,numIters=100)
        except:

            print('cannot quasi-newton it')  '''
        #self.gpMdl = gp.GPR()
        self.gpMdl.setPrior(mean=m, kernel=k)
        self.gpMdl.setNoise(log_sigma=np.log(0.7))
        #self.gpMdl.getPosterior(self.gprX,self.gprY)
        self.gpMdl.setOptimizer('Minimize')
        self.gpMdl.optimize(self.gprX, self.gprY,
                            numIterations=10)  #,numIters=100)

        return self.gpMdl.covfunc.hyp
Esempio n. 2
0
def compute_gp_regression(X_train, y_train, X_test):
    model = pyGPs.GPR()
    m = pyGPs.mean.Const(0)
    k = pyGPs.cov.RBF()
    model.setPrior(mean=m, kernel=k)
    model.optimize(X_train, y_train)
    y_pred, _, _, _, _ = model.predict(X_test)
    return y_pred
Esempio n. 3
0
 def test_GPR(self):
     print("testing GP regression...")
     model = pyGPs.GPR()
     m = pyGPs.mean.Zero()
     k = pyGPs.cov.RBF()
     model.setPrior(mean=m, kernel=k)
     model.setOptimizer("Minimize", num_restarts=10)
     model.optimize(self.xr, self.yr)
     model.predict(self.zr)
     self.checkRegressionOutput(model)
Esempio n. 4
0
def run():
    model = pyGPs.GPR()

    x, y, z = generate_toy_data()
    lel = np.apply_along_axis(np.std, 0, x)
    print "parameters"
    print lel
    lengthscale = edistance_at_percentile(x, 50)
    print lengthscale
    # TODO: set non-default parameters
    k = pyGPs.cov.RBFard(log_ell_list=[0.01, 0.01],
                         log_sigma=0.01)  #D=x.shape[1])
    m = pyGPs.mean.Const()

    model.setPrior(mean=m, kernel=k)

    print "hyperparameters"
    print k.hyp
    model.optimize(x, y)
    print "posterior", model.posterior
    print "Negative log marginal liklihood optimized:", round(model.nlZ, 3)

    def objective(x):
        ymu, ys2, fmu, fs2, lp = model.predict(x.reshape((1, len(x))))
        ret = ymu - 1.645 * np.sqrt(ys2)
        return ret[0][0]

    x_opt = fmin_bfgs(lambda x: objective(x) * -1, np.arange(0, 0.2, 0.1))
    print "Optimized value of x:", x_opt

    ymu, ys2, fmu, fs2, lp = model.predict(z)
    q_95 = ymu + 1.645 * np.sqrt(ys2)
    q_5 = ymu - 1.645 * np.sqrt(ys2)
    t1 = sort_for_plotting(z[:, -1].reshape(len(z), 1), q_95, q_5)
    t2 = sort_for_plotting(z[:, 0].reshape(len(z), 1), q_95, q_5)

    plt.figure()
    ymu = np.reshape(ymu, (ymu.shape[0], ))
    plt.plot(z[:, -1], ymu, ls='None', marker='+')
    plt.fill_between(t1[:, 0],
                     t1[:, 1],
                     t1[:, 2],
                     facecolor=[0.7539, 0.89453125, 0.62890625, 1.0],
                     linewidths=0)
    plt.show()
    plt.figure()
    plt.plot(z[:, 0], ymu, ls='None', marker='+')
    plt.fill_between(t2[:, 0],
                     t2[:, 1],
                     t2[:, 2],
                     facecolor=[0.7539, 0.89453125, 0.62890625, 1.0],
                     linewidths=0)
    plt.show()
Esempio n. 5
0
    def setUp(self):
        # fix random seed
        np.random.seed(0)

        # random data for testing
        n = 20  # number of inputs
        D = 3  # dimension of inputs
        self.x = np.random.normal(loc=0.0, scale=1.0, size=(n, D))
        self.y = np.random.random((n, ))
        self.model = pyGPs.GPR()
        nlZ, dnlZ, post = self.model.getPosterior(self.x, self.y)
        self.nlZ_beforeOpt = nlZ
Esempio n. 6
0
def optimize_max_possible_value(x, y, grid, func):
    model = pyGPs.GPR()
    np_x = np.array(x)
    np_y = np.array(y)
    np_z = np.array(z)
    model.getPosterior(np_x, np_y)
    model.optimize(np_x, np_y)

    used_points = set()
    for step in xrange(100):
        l = model.predict(np_z)
        possible_max_point = None
        possible_max_value = None
        possible_max_index = None
        N = 2
        for i in xrange(len(z)):
            point = z[i]
            value = l[0][i][0]
            variance = sqrt(l[1][i][0])
            if possible_max_value is None or possible_max_value < value + variance * N:
                possible_max_point = point
                possible_max_value = value + variance * N
                possible_max_index = i
        print possible_max_index, possible_max_point, possible_max_value
        if possible_max_index in used_points:
            return possible_max_point, func(possible_max_point)
        used_points.add(possible_max_index)

        x.append(possible_max_point)
        y.append(func(possible_max_point))
        np_x = np.array(x)
        np_y = np.array(y)
        np_z = np.array(z)
        model = pyGPs.GPR()
        model.getPosterior(np_x, np_y)
        model.optimize(np_x, np_y)
    return possible_max_point, func(possible_max_point)
Esempio n. 7
0
    def test(self, features, version, label):
        """
        Learns GPR and KNR model from given training set and test on test set.

        Here, training set consists of every odd feature and test set consists of every training set is equal to test set.

        :param features:
        :param version:
        :param label:
        :return:
        """

        groundtruth = np.load(self.param_path + '/v' + str(version) + '_' +
                              self.GT)

        _trainX = np.concatenate(features[0:features.shape[0]:2])
        _trainY = np.concatenate(groundtruth[0:groundtruth.size:2])
        testX = features[1:features.shape[0]:2]
        testY = groundtruth[1:groundtruth.size:2]

        print 'features.shape: ', features.shape, ', groundtruth.shape: ', groundtruth.shape
        print '_trainX.shape: ', _trainX.shape, ', _trainY.shape: ', _trainY.shape

        trainX, trainY = self.exclude_label(_trainX, _trainY, c=0)

        PYGPR = 'gpr_' + label
        KNR = 'knr_' + label
        if files.isExist(self.model_path, PYGPR):
            gprmodel = self.loadf(self.model_path, PYGPR)
            knrmodel = self.loadf(self.model_path, KNR)

        else:
            print 'Learning GPR model'
            gprmodel = pyGPs.GPR()
            gprmodel.getPosterior(trainX, trainY)
            gprmodel.optimize(trainX, trainY)
            self.savef(self.model_path, PYGPR, gprmodel)

            print 'Learning KNR model'
            knrmodel = knr(trainX, trainY)
            self.savef(self.model_path, KNR, knrmodel)

            print 'Learning both GPR and KNR model is DONE.'

        self.plot_gpr(gprmodel, testX, testY, label, 'odd_feature')
        self.plot_knr(knrmodel, testX, testY, label, 'odd_feature')
Esempio n. 8
0
def calculateRMSEPyGP(vectorX,vectorY,labelList):
    """
    calculate the root mean squared error
    Parameters:
    -----------

    vectorX: timestamps of the timeseries
    vectorY: valueSet of the timeseries
    labelList: labels of the timeseries
    Returns:
    --------
    list of (household,rmse) tuples
    """

    #setX = [preprocessing.scale(element )for element in vectorX]
    setY=preprocessing.scale(vectorY,axis=1)

    model = pyGPs.GPR()      # specify model (GP regression)
    k =  pyGPs.cov.Linear() + pyGPs.cov.RBF() #hyperparams will be set with optimizeHyperparameters method
    model.setPrior(kernel=k)



    hyperparams, model2 = GPE.optimizeHyperparameters([0.0000001,0.0000001,0.0000001],model,vectorX,setY,bounds=[(None,5),(None,5),(None,5)],method = 'L-BFGS-B')
    print('hyerparameters used:',hyperparams)

    y_pred, ys2, fm, fs2, lp = model2.predict(vectorX[0])


    #plot general model after normalizing the input timeseries
    plt.plot(y_pred, color='red')
    for i in setY:
        plt.plot(i,color='blue')
    plt.show(block=True)


    rmseData = []
    for i in range(0,len(vectorY),1):
        rmse = mean_squared_error(vectorY[i], y_pred)**0.5
        HH = labelList[i]
        rmseData.append((HH,rmse))
    return rmseData
Esempio n. 9
0
    def test_trainset_test_same(self, features, version, label):
        """
        Learns GPR and KNR model from given training set and test on test set.

        Here, training set is equal to test set.

        :param features:
        :param version:
        :param label:
        :return:
        """
        groundtruth = np.load(self.param_path + '/v' + str(version) + '_' +
                              self.GT)

        _trainX = np.concatenate(features)
        _trainY = np.concatenate(groundtruth)

        trainX, trainY = self.exclude_label(_trainX, _trainY, c=0)
        testX = features
        testY = groundtruth

        PYGPR = 'gpr_all_' + label
        KNR = 'knr_all_' + label
        if files.isExist(self.model_path, PYGPR):
            gprmodel = self.loadf(self.model_path, PYGPR)
            knrmodel = self.loadf(self.model_path, KNR)

        else:
            print 'Learning GPR model'
            gprmodel = pyGPs.GPR()
            gprmodel.getPosterior(trainX, trainY)
            gprmodel.optimize(trainX, trainY)
            self.savef(self.model_path, PYGPR, gprmodel)

            print 'Learning KNR model'
            knrmodel = knr(trainX, trainY)
            self.savef(self.model_path, KNR, knrmodel)

            print 'Learning both GPR and KNR model is DONE.'

        self.plot_gpr(gprmodel, testX, testY, label, 'all_feature')
        self.plot_knr(knrmodel, testX, testY, label, 'all_feature')
 def InitModel(self):
     # initialize search space
     self.x = np.array([[sum(n)/2 for n in self.domain]])
     self.y = np.array([self.func(self.x[0])])
     self.regret = np.array([np.linalg.norm(self.x[0] - self.optima)])
     self.regretBound = np.array([1])
     self.covF = np.array([0])
     self.covTr = np.array([0])
     
     # specify model (GP regression)
     self.model = pyGPs.GPR()
     m = pyGPs.mean.Zero()
     k = pyGPs.cov.Linear()
     if model.kernel == 'RBF':
         k = pyGPs.cov.RBF()
         
     if model.kernel == 'Matern':
         k = pyGPs.cov.Matern()
     
     self.model.setPrior(mean=m, kernel=k)
Esempio n. 11
0
def gpr(p, *args):
    p1 = p[0]
    p2 = p[1]
    p3 = p[2]
    # x, y, xs, ys = args
    # min_max_scaler1 = preprocessing.MinMaxScaler()
    # min_max_scaler2 = preprocessing.MinMaxScaler()
    # min_max_scaler3 = preprocessing.MinMaxScaler()
    # min_max_scaler4 = preprocessing.MinMaxScaler()
    # x = min_max_scaler1.fit_transform(x)
    # xs = min_max_scaler2.fit_transform(xs)
    # y = min_max_scaler3.fit_transform(y)
    # ys = min_max_scaler4.fit_transform(ys)

    x, y, ys = args
    min_max_scaler1 = preprocessing.MinMaxScaler()
    min_max_scaler2 = preprocessing.MinMaxScaler()
    min_max_scaler3 = preprocessing.MinMaxScaler()
    x = min_max_scaler1.fit_transform(x)
    y = min_max_scaler2.fit_transform(y)
    ys = min_max_scaler3.fit_transform(ys)

    pca = PCA(n_components='mle')
    x_pca = pca.fit_transform(x)

    k1 = pyGPs.cov.RBF(np.log(p1), np.log(p2)) + pyGPs.cov.Noise(np.log(p3))
    # STANDARD GP (prediction)
    m = pyGPs.mean.Linear(D=x_pca[0:600, :].shape[1]) + pyGPs.mean.Const()
    model = pyGPs.GPR()
    model.setData(x_pca[0:600, :], y)
    model.setPrior(mean=m, kernel=k1)

    # STANDARD GP (training)
    # model.optimize(x, y)
    ymu, ys2, fmu, fs2, lp = model.predict(x_pca[600:660, :])

    ymu = min_max_scaler3.inverse_transform(ymu)
    ys = min_max_scaler3.inverse_transform(ys)

    rmse = pyGPs.Validation.valid.RMSE(ymu, ys)
    return rmse
Esempio n. 12
0
    def __init__(self, input, n_in, n_out, output):
        """ Initialize the parameters of the logistic regression

        :type input: theano.tensor.TensorType
        :param input: symbolic variable that describes the input of the
                      architecture (one minibatch)

        :type n_in: int
        :param n_in: number of input units, the dimension of the space in
                     which the datapoints lie

        :type n_out: int
        :param n_out: number of output units, the dimension of the space in
                      which the labels lie

        """
        input = np.asarray(input)
        self.y = np.asarray(output)
        model = pyGPs.GPR()
        model.setData(input, self.y)
        model.optimize()
        ymu, ys2, fmu, fs2, lp = model.predict(input)
        self.lp = lp
        self.ymu = ymu
    def __init__(self, winSize = 500, gpWinSize = 40,gpin_winSize =40 ,nu_cluster = 3,
                 controlFeedback = 1, alpha = 7, beta = 2, sigma = 0.9, controllerDelay = 6 ):
        #  online Learning parameters and variables
        self.__winSize = winSize
        self.__gpWinSize = gpWinSize
        self.__gpin_winSize = gpin_winSize ;
        self.__fileName = "data_init.csv"
        # system data
        self.__inData = []
        self.__outData = []
        self.__statData = []
        self.__clusData = []
        
        # unclontroled input forecast model
        self.__gpfX = []
        self.__gpfY = []


        self.__sysState = []
        # Number of clusters
        self.__Nc = nu_cluster
        self.__onlineCluster = 1

        # model status
        self.__modelInitilization  = 0  # 0: initial, 1: learn and predict
        self.__modelTimeIdx = 0
        self.__modelstate = 0
        # model control output
        self.__controlOut = []
        self.__controlFeedback = controlFeedback
        self.__alpha = alpha
        self.__beta = beta
        self.__sigma = sigma
        self.__controllerDelay = controllerDelay
        self.__controllerCounter = 0
        # model objects
        # state models
        self.__GPs = []

        # forecast model
        self.__gpFmdl = gp.GPR()

        # classifier model
        self.__myCluster = KMeans(n_clusters=self.__Nc ,init='random', random_state=0)



        # variables to store prediction data for evaluation and plotting:
        # forecasting workload variables
        self.__In_mean = []
        self.__In_si = []
        self.__In_pred_data = []

        # classification variables
        self.__sysModes = []

        # for output variables
        self.__out_mean =[]
        self.__out_si = []
        self.__out_pred_data = []
        # for i in self.__Nc:
        #     self.__out_mean.append([])
        #     self.__out_si.append([])
        #     self.__out_pred_data.append([])


        # other
        self.verbose = 1

        # pass the offline data to initialize the model
        # input, output and model state indices in data
        indxIn = 0        # Input indices 
        indxOut = 18        # Output indices
        indxS = [14,17]     # State indices  
        indxQ = [2,3, 4, 5, 6, 8, 12, 13]  #clustering data indicies
        
        inData = 0
        outData = 0
        statData = []
        clusData = [];
        with open(self.__fileName, 'rt') as dataFile:
            reader = csv.reader(dataFile, delimiter=',')
            for row in reader:
                inData = float(row[indxIn])
                outData = float(row[indxOut])
                statData = [float(row[i]) for i in indxS]
                clusData = [float(row[i]) for i in indxQ]
                self.__initModel(inData, statData, outData, clusData)

                if self.__modelInitilization:
                    break
    def __initModel(self, sysIn, sysStat, sysOut, sysClus):
        
        # buffer data untill the window size is reached
        self.__inData.append(sysIn)
        self.__outData.append(sysOut)
        self.__statData.append(sysStat)
        self.__clusData.append(sysClus)


        # Lean forecast model and system indx
        self.__gpfX.append(self.__modelTimeIdx)
        self.__gpfY.append(sysIn)

        while len(self.__gpfX) > self.__gpin_winSize:
            # delete oldest data
            self.__gpfX.pop(0)
            self.__gpfY.pop(0)

        self.__modelTimeIdx += 1

        if len(self.__inData) >= self.__winSize:
            # Learn the models  (align the data to input output format  Y(k+1) = f(x(k),u(k+1)))
            self.__inData.pop(0)
            self.__outData.pop(0)
            # self.__statData.pop()
            # self.__clusterFeatures.pop()

            # classify the data
            clustersX = self.__myCluster.fit_predict(self.__clusData)
            if self.verbose:
                print ("training state-space models using  GPs")

            for i in range(self.__Nc):
                gprX = []
                gprY = []

                for j in range(len(clustersX) - 1):
                    if clustersX[j] == i:
                        gprX.append([self.__inData[j]] + self.__statData[j])
                        gprY.append(self.__outData[j])
                gprX = np.array(gprX)
                gprY = np.array(gprY)
                gpmdl = gp.GPR()
                m = gp.mean.Zero()
                RBF_hyp_init = [0.5] * (len(sysStat) + 2) 
                k = gp.cov.RBFard(D=None, log_ell_list=RBF_hyp_init[:-1], log_sigma=RBF_hyp_init[-1])
                gpmdl.setPrior(mean=m, kernel=k)
                if self.verbose:
                    print ("training GP of mode: " + str(i))
                # gpmdl.getPosterior(gprX,gprY)
                gpmdl.setNoise(log_sigma=np.log(0.8))

                gpmdl.setOptimizer('Minimize')  # ('Minimize');
                gpmdl.optimize(gprX, gprY)  # ,numIterations=100)

                self.__GPs.append(gpmdl)

            if self.verbose:
                print ("training forecast Model using GP")

            try:
                k_f = gp.cov.RBF(log_ell=1, log_sigma=1)
                self.__gpFmdl.setPrior(mean=gp.mean.Zero(), kernel=k_f)
                self.__gpFmdl.setNoise(log_sigma=np.log(0.8))
                self.__gpFmdl.setOptimizer('BFGS')  # ('Minimize');
                self.__gpFmdl.optimize(np.array(self.__gpfX), np.array(self.__gpfY))  # ,numIterations=100)
            except:
                print('can quasi-newton it (forecast)')
                self.__gpFmdl = gp.GPR()
                k_f = gp.cov.RBF(log_ell=1, log_sigma=1)
                self.__gpFmdl.setPrior(mean=gp.mean.Zero(), kernel=k_f)
                self.__gpFmdl.setNoise(log_sigma=np.log(0.8))
                self.__gpFmdl.setPrior(mean=gp.mean.Zero(), kernel=k_f)
                self.__gpFmdl.setOptimizer('Minimize')  # ('Minimize');
                self.__gpFmdl.optimize(np.array(self.__gpfX), np.array(self.__gpfY))  # , numIterations=100)
            self.__sysState = self.__statData[-1]
            self.__modelInitilization = 1
Esempio n. 15
0
    def __initModel(self, sysIn, sysStat, sysOut):

        self.__inData.append(sysIn)
        self.__outData.append(sysOut)
        self.__statData.append(sysStat)

        self.__featurewin.append(sysStat)
        while len(self.__featurewin) < self.__featureWinSize:
            self.__featurewin.append(sysStat)

        while len(self.__featurewin) > self.__featureWinSize:
            self.__featurewin.pop(0)

        curr_feature = self.__featureExtraction(self.__featurewin)
        # update feature data  (slid the window)
        self.__clusterFeatures.append(curr_feature)

        # update forecast model and system indx
        # add the new data  (slid the win)
        self.__gpfX.append(self.__modelTimeIdx)
        self.__gpfY.append(sysIn)

        while len(self.__gpfX) > self.__gpWinSize:
            # delete oldest data
            self.__gpfX.pop(0)
            self.__gpfY.pop(0)

        self.__modelTimeIdx += 1

        if len(self.__clusterFeatures) >= self.__winSize:
            # Learn the models  (align the data to input output format  Y(k+1) = f(x(k),u(k+1)))
            self.__inData.pop(0)
            self.__outData.pop(0)
            # self.__statData.pop()
            # self.__clusterFeatures.pop()

            # classify the data
            clustersX = self.__myCluster.fit_predict(self.__clusterFeatures)
            if self.verbose:
                print("training state-space models using  GPs")

            for i in range(self.__Nc):
                gprX = []
                gprY = []

                for j in range(len(clustersX) - 1):
                    if clustersX[j] == i:
                        gprX.append([self.__inData[j]] + self.__statData[j])
                        gprY.append(self.__outData[j])
                gprX = np.array(gprX)
                gprY = np.array(gprY)
                gpmdl = gp.GPR()
                m = gp.mean.Zero()
                RBF_hyp_init = [0.5] * (
                    len(sysStat) + 2
                )  # [13.9310228936928,2.54640381722411,0.177686434357263,12.5490563084955,162.467937309584,3.38074333489536]
                k = gp.cov.RBFard(D=None,
                                  log_ell_list=RBF_hyp_init[:-1],
                                  log_sigma=RBF_hyp_init[-1])
                gpmdl.setPrior(mean=m, kernel=k)
                if self.verbose:
                    print("training GP of mode: " + str(i))
                # gpmdl.getPosterior(gprX,gprY)
                gpmdl.setNoise(log_sigma=np.log(0.8))

                gpmdl.setOptimizer('Minimize')  # ('Minimize');
                gpmdl.optimize(gprX, gprY)  # ,numIterations=100)

                self.__GPs.append(gpmdl)

            if self.verbose:
                print("training forecast Model using GP")

            try:
                k_f = gp.cov.RBF(log_ell=1, log_sigma=1)
                self.__gpFmdl.setPrior(mean=gp.mean.Zero(), kernel=k_f)
                self.__gpFmdl.setNoise(log_sigma=np.log(0.8))
                self.__gpFmdl.setOptimizer('BFGS')  # ('Minimize');
                self.__gpFmdl.optimize(np.array(self.__gpfX),
                                       np.array(
                                           self.__gpfY))  # ,numIterations=100)
            except:
                print('can quasi-newton it (forecast)')
                self.__gpFmdl = gp.GPR()
                k_f = gp.cov.RBF(log_ell=1, log_sigma=1)
                self.__gpFmdl.setPrior(mean=gp.mean.Zero(), kernel=k_f)
                self.__gpFmdl.setNoise(log_sigma=np.log(0.8))
                self.__gpFmdl.setPrior(mean=gp.mean.Zero(), kernel=k_f)
                self.__gpFmdl.setOptimizer('Minimize')  # ('Minimize');
                self.__gpFmdl.optimize(
                    np.array(self.__gpfX),
                    np.array(self.__gpfY))  # , numIterations=100)
            self.__sysState = self.__statData[-2]
            self.__modelInitilization = 1
Esempio n. 16
0
    # plt.plot(Ttrain,Ytrain,'r')

    Ttest = np.atleast_2d(range(nTtrain, nT)).T

    # plt.plot(Ttest,Ytest,'b', Ttest,predict, 'g.')
    # plt.show()

    # Baseline error
    #err = getError.getError(Ytest, predict, muTIM, S2TIM)
    # print 'NLL, MSE, MAE:'
    # print err[0], err[1], err[2]

    # Train GPTS
    covFunc = pyGPs.cov.RQ() + pyGPs.cov.Const() + pyGPs.cov.Noise()
    model = pyGPs.GPR()
    model.setPrior(kernel=covFunc)
    #model.setScalePrior([1.0, 1.0])
    # Learn the hyperparameters on the training data
    model.setOptimizer("RTMinimize", 10)
    model.optimize(Ttrain, Ytrain)

    # Do the extrapolation

    logthetaGPTS = model.covfunc.hyp

    #(mu, sig2, df) = GPTSonline(Ytest, covFunc, logthetaGPTS,model.ScalePrior)

    # Plot the stuff
    plt.axis([0.0, 7.0, -4.0, 5.0])
    plt.plot(Ttrain, Ytrain, 'r')
Esempio n. 17
0
    def __init__(self):
        return

        #def __init__(self, winSize = 600, gpWinSize = 50 ,featureWinSize=3 ,nu_cluster = 2,
        #             controlFeedback = 1, alpha = 3, beta = 1, sigma = 0.9, controllerDelay = 5 ):
        #  online Learning parameters and variables
        self.__winSize = winSize
        self.__gpWinSize = gpWinSize
        self.__featureWinSize = featureWinSize
        self.__modelInitilization = 0  # 0: not initialozed, 1: learn and predict
        self.offlineInit = 0  # 1: use an offline data to init the model, 0: init online by buffering data

        self.__fileName = "result04.csv"

        # load data
        self.__inData = []
        self.__outData = []
        self.__statData = []
        self.__gpfX = []
        self.__gpfY = []

        self.__sysState = []
        # Number of clusters
        self.__Nc = nu_cluster
        self.__clusterFeatures = []
        self.__featurewin = []
        self.__onlineCluster = 1

        # model status

        self.__modelTimeIdx = 0
        self.__modelstate = 0
        # model control output
        self.__controlOut = []
        self.__controlFeedback = controlFeedback
        self.__alpha = alpha
        self.__beta = beta
        self.__sigma = sigma
        self.__controllerDelay = controllerDelay
        self.__controllerCounter = 0
        # model objects
        # state models
        self.__GPs = []

        # forecast model
        self.__gpFmdl = gp.GPR()

        # classifier model
        self.__myCluster = KMeans(n_clusters=self.__Nc,
                                  init='random',
                                  random_state=0)

        # variables to store prediction data for evaluation and plotting:
        # forecasting workload variables
        self.__In_mean = []
        self.__In_si = []
        self.__In_pred_data = []

        # classification variables
        self.__sysModes = []

        # for output variables
        self.__out_mean = []
        self.__out_si = []
        self.__out_pred_data = []
        # for i in self.__Nc:
        #     self.__out_mean.append([])
        #     self.__out_si.append([])
        #     self.__out_pred_data.append([])

        # other
        self.verbose = 0

        if self.offlineInit:
            # pass the offline data to initialize the model
            # input, output and model state indices in data
            indxIn = 36  # range(0,9)      # Input indices [1:9]
            indxOut = 38  # range(9,18)      # Output indices [10:18]
            indxS = [18, 26, 27,
                     35]  # range(18,36)     # State indices  [20:36]
            inData = 0
            outData = 0
            statData = []
            with open(self.__fileName, 'rt') as dataFile:
                reader = csv.reader(dataFile, delimiter=',')
                for row in reader:
                    inData = float(row[indxIn])
                    outData = float(row[indxOut])
                    statData = [float(row[i]) for i in indxS]
                    self.__initModel(inData, statData, outData)

                    if self.__modelInitilization:
                        break
Esempio n. 18
0
    def visualize_video(self, features, version, label, _fgset, _colordp,
                        param):
        groundtruth = np.load(self.param_path + '/v' + str(version) + '_' +
                              self.GT)

        _trainX = np.concatenate(features[0:features.shape[0]:2])
        _trainY = np.concatenate(groundtruth[0:groundtruth.size:2])
        testX = features[1:features.shape[0]:2]
        testY = groundtruth[1:groundtruth.size:2]

        np.savetxt(self.res_path + '/feature_' + label + '.txt',
                   np.hstack((_trainX, _trainY.reshape(-1, 1))),
                   fmt='%d')
        print 'features.shape: ', features.shape, ', groundtruth.shape: ', groundtruth.shape
        print '_trainX.shape: ', _trainX.shape, ', _trainY.shape: ', _trainY.shape

        trainX, trainY = self.exclude_label(_trainX, _trainY, c=0)

        PYGPR = 'gpr_' + label
        KNR = 'knr_' + label
        if files.isExist(self.res_path, PYGPR):
            gprmodel = self.loadf(self.res_path, PYGPR)
            knrmodel = self.loadf(self.res_path, KNR)

        else:
            print 'Learning GPR model'
            gprmodel = pyGPs.GPR()
            gprmodel.getPosterior(trainX, trainY)
            gprmodel.optimize(trainX, trainY)
            self.savef(self.res_path, PYGPR, gprmodel)

            print 'Learning KNR model'
            knrmodel = knr(trainX, trainY)
            self.savef(self.res_path, KNR, knrmodel)

            print 'Learning both GPR and KNR model is DONE.'

        Y_pred = np.array([])
        Y_sum_pred = []
        Y_pred_frame = []
        for x in testX:
            ym, ys2, fm, fs2, lp = gprmodel.predict(np.array(x))
            Y_pred = np.hstack((Y_pred, ym.reshape(ym.size)))
            ym = ym.reshape(ym.size)
            Y_sum_pred.append(sum(ym))
            Y_pred_frame.append(ym)

        Y_label = []
        Y_sum_label = []

        for y in testY:
            Y_label += y
            Y_sum_label.append(sum(y))

        imgset = []
        fgset = _fgset[1:len(_fgset) - 1]
        colordp = _colordp[1:len(_colordp) - 1]
        for i in range(len(fgset)):
            rect, cont = self.segmentation_blob(fgset[i], param)
            tmp = colordp[i].copy()

            pred = Y_pred_frame[i]
            gt = groundtruth[i]
            for j in range(len(rect)):
                r = rect[j]
                cv2.rectangle(tmp, (r[0], r[2]), (r[1], r[3]), tools.green, 1)

                msg_pred = 'Pred: ' + str(pred[j])
                msg_gt = 'GT: ' + str(gt[j])
                cv2.putText(tmp, msg_pred, (r[0], r[2]),
                            cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.0, tools.blue)
                cv2.putText(tmp, msg_gt, (r[0] + 10, r[2]),
                            cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.0, tools.red)

            imgset.append(tmp)
        images.display_img(imgset, 300)
Esempio n. 19
0
    def ANM_predict_causality(self,
                              train_size=0.5,
                              independence_criterion='HSIC',
                              metric='linear'):
        '''
            Prediction of causality based on the bivariate additive noise model

            Parameters
            ----------
            independence_criterion :
                kruskal for Kruskal-Wallis H-test,
                HSIC for Hilbert-Schmidt Independence Criterion

            Returns
            -------
            Causal-direction: 1 if X causes Y, or -1 if Y causes X
        '''
        Xtrain, Xtest, Ytrain, Ytest = train_test_split(self.X,
                                                        self.Y,
                                                        train_size=train_size)
        #_gp = KernelRidge(kernel='rbf',degree=3)#GaussianProcess()#

        #Forward case
        #_gp.fit(Xtrain,Ytrain)
        #errors_forward = _gp.predict(Xtest) - Ytest
        _gp = pyGPs.GPR()
        _gp.getPosterior(Xtrain, Ytrain)
        _gp.optimize(Xtrain, Ytrain)
        ym, ys2, fm, fs2, lp = _gp.predict(Xtest)
        errors_forward = ym - Ytest

        #Backward case
        #_gp.fit(Ytrain,Xtrain)
        #errors_backward = _gp.predict(Ytest) - Xtest
        _gp = pyGPs.GPR()
        _gp.getPosterior(Ytrain, Xtrain)
        _gp.optimize(Ytrain, Xtrain)
        ym, ys2, fm, fs2, lp = _gp.predict(Ytest)
        errors_backward = ym - Xtest

        #Independence score

        forward_indep_pval = {
            'kruskal': kruskal(errors_forward, Xtest)[1],
            'HSIC': self.HilbertSchmidtNormIC(errors_forward, Xtest)[1]
        }[independence_criterion]

        backward_indep_pval = {
            'kruskal': kruskal(errors_backward, Ytest)[1],
            'HSIC': self.HilbertSchmidtNormIC(errors_backward, Ytest)[1]
        }[independence_criterion]

        #print 'Scores:', forward_indep_pval, backward_indep_pval

        #Warning it should be <
        if forward_indep_pval > backward_indep_pval:
            self.causal_direction = 1
            self.pvalscore = forward_indep_pval
        else:
            self.causal_direction = -1
            self.pvalscore = backward_indep_pval

        return {
            'causal_direction': self.causal_direction,
            'pvalscore': self.pvalscore,
            'difways': abs(forward_indep_pval - backward_indep_pval)
        }
Esempio n. 20
0
    def ANM_causation_score(self,
                            train_size=0.5,
                            independence_criterion='HSIC',
                            metric='linear',
                            regression_method='GP'):
        '''
            Measure how likely a given causal direction is true

            Parameters
            ----------
            train_size :
                Fraction of given data used to training phase

            independence_criterion :
                kruskal for Kruskal-Wallis H-test,
                HSIC for Hilbert-Schmidt Independence Criterion

            metric :
                linear, sigmoid, rbf, poly
                kernel function to compute gramm matrix for HSIC
                gaussian kernel is used in :
                Nonlinear causal discovery with additive noise models
                Patrik O. Hoyer et. al

            Returns
            -------
            causal_strength: A float between 0. and 1.
        '''
        Xtrain, Xtest, Ytrain, Ytest = train_test_split(self.X,
                                                        self.Y,
                                                        train_size=train_size)
        if regression_method == 'GP':
            _gp = pyGPs.GPR()  # specify model (GP regression)
            _gp.getPosterior(
                Xtrain,
                Ytrain)  # fit default model (mean zero & rbf kernel) with data
            _gp.optimize(
                Xtrain, Ytrain
            )  # optimize hyperparamters (default optimizer: single run minimize)

            #Forward case
            #_gp = KernelRidge(kernel='sigmoid',degree=3)
            #_gp.fit(Xtrain,Ytrain)
            ym, ys2, fm, fs2, lp = _gp.predict(Xtest)
            #_gp.plot()
            #errors_forward = _gp.predict(Xtest) - Ytest
            errors_forward = ym - Ytest
        else:
            _gp = KernelRidge(kernel='sigmoid')
            _gp.fit(Xtrain, Ytrain)
            errors_forward = _gp.predict(Xtest) - Ytest

        #Independence score

        forward_indep_pval = {
            'kruskal':
            kruskal(errors_forward, Xtest)[1],
            'HSIC':
            self.HilbertSchmidtNormIC(errors_forward, Xtest, metric=metric)[1]
        }[independence_criterion]

        return {'causal_strength': forward_indep_pval}
    temp = [trainingSet[i][5]]
    y5.append(temp)
    temp = [trainingSet[i][6]]
    y6.append(temp)

x = np.array(X)
y0 = np.array(y0)
y1 = np.array(y1)
y2 = np.array(y2)

#m = pyGPs.mean.Zero()
#k = pyGPs.cov.RBFard(log_ell_list=[0.05,0.17], log_sigma=1.)
#model.setPrior(mean=m, kernel=k)
#model.setNoise( log_sigma = np.log(0.1) )

model1 = pyGPs.GPR()  # model
model1.setData(x, y0)

model2 = pyGPs.GPR()
model2.setData(x, y1)

model3 = pyGPs.GPR()
model3.setData(x, y2)

host = ''
port = 8221
address = (host, port)

server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_socket.bind(address)
server_socket.listen(5)
Esempio n. 22
0
def calculate_rmse_gp(vector_x,
                      vector_y,
                      weighted=True,
                      plot=False,
                      context=None,
                      optimization_params=None,
                      signed=False,
                      sample=None):
    """Calculate the root mean squared error.

    :param vector_x: timestamps of the timeseries
    :param vector_y: valueSet of the timeseries
    :param weighted: weight RMSE wrt variance of prediction
    :param plot: plot the expected function
    :param context: (internal)
    :param optimization_params:
    :param signed: Add a sign to RMSE based on whether the prediction is on average higher or lower than the prediction
    :param sample: Learn from sample of the data (int for min number, float for fraction, list for inidices)
    :returns: list(idx,rmse), hyperparams, model
    """
    if optimization_params is None:
        optimization_params = {}
    # setX = [preprocessing.scale(element )for element in vectorX]
    # setY = preprocessing.scale(vector_y, axis=1)

    vector_y_train = vector_y
    vector_x_train = vector_x
    if sample:
        if type(sample) == float:
            logger.debug("Sample series for training (ratio)")
            vector_y_train = []
            vector_x_train = []
            for idx in random.sample(range(len(vector_y)),
                                     k=int(len(vector_y) * sample)):
                vector_y_train.append(vector_y[idx])
                vector_x_train.append(vector_x[idx])
        elif type(sample) == int:
            logger.debug("Sample series for training (number)")
            if len(vector_y) <= sample:
                vector_y_train = vector_y
                vector_x_train = vector_x
            else:
                vector_y_train = []
                vector_x_train = []
                for idx in random.sample(range(len(vector_y)), k=sample):
                    vector_y_train.append(vector_y[idx])
                    vector_x_train.append(vector_x[idx])
        elif type(sample) == list:
            logger.debug("Sample series for training (indices)")
            vector_y_train = []
            vector_x_train = []
            for idx in sample:
                vector_y_train.append(vector_y[idx])
                vector_x_train.append(vector_x[idx])

    model = pyGPs.GPR()  # specify model (GP regression)
    k = pyGPs.cov.Linear() + pyGPs.cov.RBF(
    )  # hyperparams will be set with optimizeHyperparameters method
    model.setPrior(kernel=k)

    hyperparams, model2 = gpe.optimizeHyperparameters(
        optimization_params.get("initialHyperParameters",
                                [0.0000001, 0.0000001, 0.0000001]),
        model,
        vector_x_train,
        vector_y_train,
        bounds=optimization_params.get("bounds", [(None, 5), (None, 5),
                                                  (None, 5)]),
        method=optimization_params.get("method", 'L-BFGS-B'))
    logger.info('Hyperparameters used: {}'.format(hyperparams))
    # mean (y_pred) variance (ys2), latent mean (fmu) variance (fs2), log predictive prob (lp)
    y_pred, ys2, fm, fs2, lp = model2.predict(vector_x[0])
    last_vector_x = vector_x[0]

    rmse_data = []
    for i in range(len(vector_y)):
        if not np.all(np.equal(last_vector_x, vector_x[i])):
            logger.debug("Recomputing prediction")
            y_pred, ys2, fm, fs2, lp = model2.predict(vector_x[i])
            last_vector_x = vector_x[i]
        if weighted:
            rmse = math.sqrt(
                mean_squared_error(vector_y[i], y_pred,
                                   (np.max(ys2) - ys2)) / np.max(ys2))
        else:
            rmse = math.sqrt(mean_squared_error(vector_y[i], y_pred))
        if signed:
            if np.mean(vector_y[i] - y_pred) < 0:
                rmse = -rmse
        rmse_data.append((i, rmse))

    if plot:
        fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(14, 2))
        xs = vector_x[0]
        ym = y_pred
        xss = np.reshape(xs, (xs.shape[0], ))
        ymm = np.reshape(ym, (ym.shape[0], ))
        ys22 = np.reshape(ys2, (ys2.shape[0], ))
        for i in vector_y:
            ax[0].plot(i, color='blue', alpha=0.2)
        ax[0].set_title("Node {}".format(context["cum_depth"]))
        ax[0].fill_between(xss,
                           ymm + 3. * np.sqrt(ys22),
                           ymm - 3. * np.sqrt(ys22),
                           facecolor=[0.7539, 0.89453125, 0.62890625, 1.0],
                           linewidth=0.5)
        ax[0].plot(xss, ym, color='red', label="Prediction")
        ax[0].legend()
        rmse_list = [t[1] for t in rmse_data]
        ax[1].hist(rmse_list, bins=100)
        ax[1].vlines(np.mean(rmse_list), 0, 2, color="red")
        ax[1].set_xlabel("RMSE")
        ax[1].set_ylabel("#")
        # plt.show(block=True)

    return rmse_data, hyperparams, model2
    def __updateModel(self, sysIn, sysStat, sysOut,sysClus):

        # update the forecast model
        if self.verbose:
            print ("update forecast Model")
        # add the new data and delete the oldest  (slid the win)
        gpfX = np.append(self.__gpFmdl.x, np.array([self.__modelTimeIdx]).reshape(-1, 1), axis=0)
        gpfY = np.append(self.__gpFmdl.y, np.array([sysIn]).reshape(-1, 1), axis=0)

        while gpfY.size > self.__gpin_winSize:
            # delete oldest data
            gpfX = np.delete(gpfX, 0, 0)
            gpfY = np.delete(gpfY, 0, 0)
        self.__modelTimeIdx += 1
        # get the old hyp
        hyp_f = self.__gpFmdl.covfunc.hyp

        # relearn the model with the old hyp as a prior model
        try:
            self.__gpFmdl = gp.GPR()
            k_f = gp.cov.RBF(log_ell=hyp_f[0], log_sigma=hyp_f[1])
            self.__gpFmdl.setPrior(mean=gp.mean.Zero(), kernel=k_f)
            self.__gpFmdl.setNoise(log_sigma=np.log(0.8))
            self.__gpFmdl.setOptimizer('BFGS')
            self.__gpFmdl.optimize(gpfX, gpfY)
        except:
            print('cannot BFGS it, forecast')
            self.__gpFmdl = gp.GPR()
            k_f = gp.cov.RBF(log_ell=hyp_f[0], log_sigma=hyp_f[1])
            self.__gpFmdl.setPrior(mean=gp.mean.Zero(), kernel=k_f)
            self.__gpFmdl.setNoise(log_sigma=np.log(0.8))
            self.__gpFmdl.setOptimizer('Minimize')
            self.__gpFmdl.optimize(gpfX, gpfY)

        # Update cluster model
        if self.__onlineCluster:
            if self.verbose:
                print ("update cluster Model ...")
            self.__myCluster = KMeans(n_clusters=self.__Nc,
                                      init=self.__myCluster.cluster_centers_,
                                      random_state=0,n_init=1)


        # update the cluster data  (slid the window)
        self.__clusData.append(sysClus)
        self.__clusData.pop(0)
        # update the clusterer
        self.__myCluster.fit(self.__clusData)

        # update system state GP model
        if self.verbose:
            print ("update system Models ...")
            
        # Estiamte discrete Mode

        predCluster = self.__myCluster.predict(np.array(sysClus).reshape(1, -1))
        self.__modelstate = np.asscalar(predCluster[0])
        self.__sysModes.append(self.__modelstate)
        
        # pull the model used for the last prediction
        gprMdl = self.__GPs[self.__modelstate]
        newgprX = np.array([sysIn] + self.__sysState).reshape(1, -1)
        gprX = np.append(gprMdl.x, newgprX, axis=0)
        gprY = np.append(gprMdl.y, np.array([sysOut]).reshape(1, -1), axis=0)
        # gprMdl.x = np.append(gprMdl.x, Xs, axis=0)
        # gprMdl.y = np.append(gprMdl.y, [outData[i]], axis=0)

        while gprY.size > self.__gpWinSize:
            gprX = np.delete(gprX, 0, 0)
            gprY = np.delete(gprY, 0, 0)

        hyp = gprMdl.covfunc.hyp

        gprMdl = gp.GPR()
        m = gp.mean.Zero()
        # k = gp.cov.SumOfKernel(gp.cov.RBFard(D=None, log_ell_list=hyp, log_sigma=1.),gp.cov.Noise(1))
        k = gp.cov.RBFard(D=None, log_ell_list=hyp[:-1], log_sigma=hyp[-1])
        gprMdl.setPrior(mean=m, kernel=k)
        # gprMdl.getPosterior(gprX,gprY)
        gprMdl.setNoise(log_sigma=np.log(0.81))
        try:
            gprMdl.setOptimizer('BFGS')
            gprMdl.optimize(gprX, gprY)
        except:
            print('cannot BFGS it ')
            gprMdl = gp.GPR()
            m = gp.mean.Zero()
            # k = gp.cov.SumOfKernel(gp.cov.RBFard(D=None, log_ell_list=hyp, log_sigma=1.),gp.cov.Noise(1))
            k = gp.cov.RBFard(D=None, log_ell_list=hyp[:-1], log_sigma=hyp[-1])
            gprMdl.setPrior(mean=m, kernel=k)
            # gprMdl.getPosterior(gprX,gprY)
            gprMdl.setNoise(log_sigma=np.log(0.81))
            gprMdl.setOptimizer('Minimize')
            gprMdl.optimize(gprX, gprY)
        self.__GPs[self.__modelstate] = gprMdl

        # Update system state
        self.__sysState = sysStat

        # save the data for Error calculation and prediction evaluation
        self.__In_pred_data.append(sysIn)
        self.__out_pred_data.append(sysOut)
def remove_confounds_fast(training_predictors, testing_predictors, training_data, testing_data, training_label, training_group_labels, normalisation, verbose) :
    
     # start by checking all inputs
    assert (np.shape(training_predictors)[0] == np.shape(training_data)[0]), 'Training predictors and training data must have same number of subjects'
    assert (np.shape(testing_predictors)[0] == np.shape(testing_data)[0]), 'Testing predictors and testing data must have same number of subjects' 
    assert (np.shape(training_predictors)[1] == np.shape(testing_predictors)[1]), 'Training and testing predictors must have same number of variables'
    assert (np.shape(training_data)[1] == np.shape(testing_data)[1]), 'Training and testing data must have same number of variables'
    assert (len(training_group_labels) == np.shape(training_data)[0]), 'Training group labels must have length equal to number of training subjects'
  
    # initialise corrected data
    corrected_testing_data = np.zeros_like(testing_data)
    corrected_training_data = np.zeros_like(training_data)

    # normalise the training and testing predictors
    if normalisation :
    
        testing_predictors = testing_predictors - np.min(training_predictors, axis=0)
        training_predictors = training_predictors - np.min(training_predictors, axis=0)
        testing_predictors = testing_predictors.astype(float) / np.max(training_predictors, axis=0)
        training_predictors = training_predictors.astype(float) / np.max(training_predictors, axis=0)

    # do regression
    n_variables = np.shape(training_data)[1]

    # if training group label not equal to 0, just train on subjects with
    # the given label
    # first copy original training predictors and data for predictions
    testing_training_predictors = training_predictors
    testing_training_data = training_data


    if not training_label == 0 :
        
        training_predictors = training_predictors[training_group_labels == training_label, :]
        training_data = training_data[training_group_labels == training_label, :]
        
    # set up GP
    
    # calculate distance matrix of training predictors to initialise RBF
    dists = squareform(pdist(training_predictors))
    
    # covariance is linear + RBF + noise
    # these all have built-in scale so no need to introduce extra hyps
    # set scale hyps to unity
    # set RBF length hyp to log of median dist
    k = pyGPs.cov.Linear(log_sigma=np.log(1.0)) + pyGPs.cov.RBF(log_ell=np.log(np.median(dists[:])), log_sigma=np.log(1.0)) + pyGPs.cov.Noise(log_sigma=np.log(1.0))
    
    # zero mean
    m = pyGPs.mean.Zero()
    
    model = pyGPs.GPR()
    model.setPrior(mean=m, kernel=k)
    model.setNoise(log_sigma=np.log(np.std(training_data[:])))
    
    # optimize the hyperparameters by maximizing log-likelihood over all
    # variables
    if verbose :
    
        print('Optimizing hyperparameters...')
    
    hyps_opt = minimize_Kostro.minimize_Kostro(model, training_predictors, training_data, 200)
    
    if verbose :
    
        print('Hyperparameters optimized!')
    
    # set GP with optimized hyperparameters
    # must convert arrays to list
    model.covfunc.hyp = list(hyps_opt[:-1])
    model.setNoise(log_sigma=np.log(np.std(training_data[:])))

    # loop through variables, removing the effects of confounds on each one
    for i in range(n_variables) :
    
        if (i % 1000) == 0 and verbose :
       
            print '%i features processed' % i
                   
        # targets are the i'th column of features
        training_targets = training_data[:, i]
        
        # set training data
        model.setData(training_predictors, training_targets)
            
        # make predictions on training data
        ym, ys2, fm, fs2, lp = model.predict(testing_training_predictors)
        
        # store residuals
        corrected_training_data[:, i] = testing_training_data[:, i] - np.squeeze(ym)
        
        # make predictions on testing data
        ym, ys2, fm, fs2, lp = model.predict(testing_predictors)
        
        # store residuals
        corrected_testing_data[:, i] =  testing_data[:, i] - np.squeeze(ym)
        
    return corrected_training_data, corrected_testing_data
Esempio n. 25
0
t_training = t[points_training]
w_training = workload[points_training]
#w_training = w_training/max(w_training)

tr_training = tr1[points_training]


# Data for validation
points_validation = np.arange(0,len(t),5)
t_validation = t[points_validation]
w_validation = workload[points_validation]
tr_validation = tr1[points_validation]

# Training of the GP model
# Learning
gp_system = gp.GPR()
gp_system.setOptimizer("Minimize", num_restarts=10)
gp_system.getPosterior(w_training, tr_training)
gp_system.optimize(w_training, tr_training)

#plt.figure()
gp_system.predict(np.sort(w_validation))
#gp_system.plot()

# Validation
tr_predicted = np.zeros(len(t_validation))
for i in np.arange(len(t_validation)):
    gp_system.predict(np.array([w_validation[i]]))
    tr_predicted[i] = np.asscalar(gp_system.ym)

Esempio n. 26
0
if __name__ == '__main__':
    data = sio.loadmat('airlinedata.mat')

    x = np.atleast_2d(data['xtrain'])
    y = np.atleast_2d(data['ytrain'])
    xt = np.atleast_2d(data['xtest'])
    yt = np.atleast_2d(data['ytest'])

    # To get interpolation too
    #xt = np.concatenate((x,xt))
    #yt = np.concatenate((y,yt))

    # Set some parameters
    Q = 10

    model = pyGPs.GPR()  # start from a new model

    # Specify non-default mean and covariance functions
    # @SEE doc_kernel_mean for documentation of all kernels/means
    m = pyGPs.mean.Zero()

    for _ in range(10):
        hyps = pyGPs.cov.initSMhypers(Q, x, y)
        k = pyGPs.cov.SM(Q, hyps)
        model.setPrior(kernel=k)

        # Noise std. deviation
        sn = 0.1

        model.setNoise(log_sigma=np.log(sn))
        # Instead of getPosterior(), which only fits data using given hyperparameters,
Esempio n. 27
0
import matplotlib.pyplot as plt
import numpy as np
import pyGPs

demoData = np.load('../../data/regression_data.npz')
x = demoData['x']
y = demoData['y']
z = demoData['xstar']

model_full = pyGPs.GPR()
model_full.getPosterior(x, y)
model_full.optimize(x, y)
model_full.predict(z)
model_full.plot()

# Training Error
prediction_x = model_full.predict(x)[0]
error_x = np.linalg.norm(prediction_x - y, 2) / np.linalg.norm(y, 2)
print('Training Error: %e' % error_x)

# Spectrum
covariance = model_full.covfunc.getCovMatrix(x, x, mode='train')
u, s, v = np.linalg.svd(covariance)

x_axis = np.arange(1, covariance.shape[0] + 1)
plt.plot(x_axis, s, '-r')
plt.title('Spectrum for Full GP')
plt.xlabel('Dimension')
plt.ylabel('Singular Value')
plt.show()