Esempio n. 1
0
def name_to_spectral_dict(like,
                          name,
                          errors=False,
                          minos_errors=False,
                          covariance_matrix=False):

    print name

    source = get_gtlike_source(like, name)
    spectrum = source.spectrum()
    d = gtlike_spectrum_to_dict(spectrum, errors)
    if minos_errors:
        parameters = ParameterVector()
        spectrum.getParams(parameters)
        for p in parameters:
            pname = p.getName()
            if p.isFree():
                lower, upper = like.minosError(name, pname)
                try:
                    d['%s_lower_err' % pname] = -1 * lower * p.getScale()
                    d['%s_upper_err' % pname] = upper * p.getScale()
                except Exception, ex:
                    print 'ERROR computing Minos errors on parameter %s for source %s:' % (
                        pname, name), ex
                    traceback.print_exc(file=sys.stdout)
                    d['%s_lower_err' % pname] = np.nan
                    d['%s_upper_err' % pname] = np.nan
            else:
                d['%s_lower_err' % pname] = np.nan
                d['%s_upper_err' % pname] = np.nan
Esempio n. 2
0
def get_covariance_matrix(like, name):
    """ Get the covarince matrix. 

        We can mostly get this from FluxDensity, but
        the covariance matrix returned by FluxDensity
        is only for the free paramters. Here, we
        transform it to have the covariance matrix
        for all parameters, and set the covariance to 0
        when the parameter is free.
    """

    #    source = like.logLike.getSource(name)
    source = get_gtlike_source(like, name)
    spectrum = source.spectrum()

    parameters = ParameterVector()
    spectrum.getParams(parameters)
    free = np.asarray([p.isFree() for p in parameters])
    scales = np.asarray([p.getScale() for p in parameters])
    scales_transpose = scales.reshape((scales.shape[0], 1))

    cov_matrix = np.zeros([len(parameters), len(parameters)])

    try:
        fd = FluxDensity(like, name)
        cov_matrix[np.ix_(free, free)] = fd.covar

        # create absolute covariance matrix:
        cov_matrix = scales_transpose * cov_matrix * scales
    except RuntimeError, ex:
        if ex.message == 'Covariance matrix has not been computed.':
            pass
        else:
            raise ex
Esempio n. 3
0
 def spectrum_to_dict(spectrum):
     """ Convert a pyLikelihood object to a python 
         dictionary which can be easily saved to a file. """
     parameters = ParameterVector()
     spectrum.getParams(parameters)
     d = dict(name=spectrum.genericName(), method='gtlike')
     for p in parameters:
         d[p.getName()] = p.getTrueValue()
     return d
Esempio n. 4
0
def gtlike_spectrum_to_dict(spectrum, errors=False):
    """ Convert a pyLikelihood object to a python 
        dictionary which can be easily saved to a file. """
    parameters=ParameterVector()
    spectrum.getParams(parameters)
    d = dict(name = spectrum.genericName(), method='gtlike')
    for p in parameters: 
        d[p.getName()]= p.getTrueValue()
        if errors: 
            d['%s_err' % p.getName()]= p.error()*p.getScale() if p.isFree() else np.nan
        if d['name'] == 'FileFunction': 
            ff=pyLikelihood.FileFunction_cast(spectrum)
            d['file']=ff.filename()
    return d